### High throughput computing to simulate climate change, wildfires and conifer forests of Yellowstone National Park

Winslow D. Hansen Department of Integrative Biology HTCondor Week May 24<sup>th</sup> 2018

Ann Olsson

### Acknowledgements

- Monica Turner
- Rupert Seidl and Werner Rammer
- Kristin Braziunas and Zak Ratajcazk
- NSF, JFSP, Alaska CSC, NPS, Vilas Research Trust





### Yellowstone National Park

- Large intact wildland area
- Oldest national park
- Point farthest from a road in the contiguous US











Ann Olsson



### Tree regeneration historically robust

National Geographic May 2016



# Climate change causing increased fire and droughts



# Fires and drought may exceed forest resilience

### Where and why might changing climate and fire may cause forests of Yellowstone to change profoundly?



### Research Challenges

• How do we study forests 100 years in the future?



#### Process-based models

 System is represented as a set of mechanistic processes that describe cause and effect relationships between system variables



Seidl et al. 2014

### **Research Challenges**

• Forests are very complex!



Tian et al. 2011

### iLand

- Individual forest Landscape and Disturbance
  - Tree reproduction, growth, and mortality
    - Light availability, climate, soils, competition
  - Trees interact with their neighbors
  - Broad-scale patterns and process emerge dynamically



# Spatially explicit landscapes

- Millions of trees
- Simulate wildfires
- ~ 3 hr runs on office computer



### Scenarios and stochasticity

- Future is uncertain and so we often ask what if questions
- Run multiple replicates of each scenario



### The need for high throughput

- 11 different scenarios
- 20 replicates of each scenario
- totaling 280 runs
- This would have taken me 35 days of computation working 24hrs per day
- It took 6 hrs with HTCondor

### Post-processing

- Simulating individual trees every day for 100 yrs generates a lot of data
- 10 gigabytes/ run minimum
- Also used high-throughput to aggregate data to landscape scales in R

### 21<sup>st</sup> century fire and forests



Hansen et al. In Prep

### 21<sup>st</sup> century fire and forests Identified thresholds of burning



Yellowstone forests could change profoundly

 Consequences for the ecosystem and people that live in the region or visit the park

- Ecology is going through a computational renaissance
- Gaining unprecedented insights
- A lot to how the computing sausage is made
- Ecologists are not well trained for this type of work

### Take aways

### Computing newbies do not know what they are doing and that is okay

- High throughput computing is intimidating for beginners
- Experts often lack a frame of reference for where beginners are starting from
- Patience is required to break
  barriers



#### Document everything to save time later

- When one task is conquered, often its on to the next
  - Insufficient repetition to master each skill
- Critical to document step by step for repeating computing tasks in months or years
- Helpful for institutional memory as new students begin in labs and old ones leave

### Computing facilitators are essential

- True innovation of CHTC
- Facilitators maximize the value to university and scientific communities