

Migrate and run HTCondor jobs to Slurm cluster via container

HTCondor Week 2018

Jingyan Shi
On behalf of scheduling group
of Computing Center, IHEP

Outline

1

Introduction and Motivation

2

Design and development

3

Status and next step

4

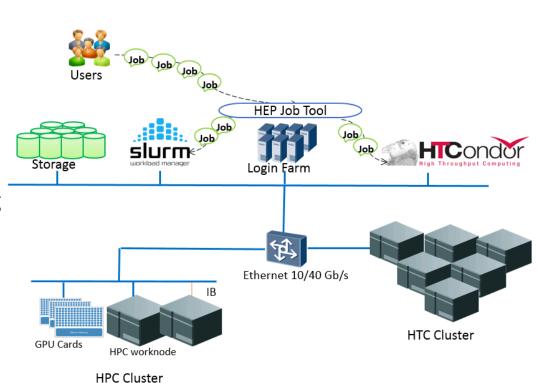
Summary

Introduction to IHEP Computing Platform

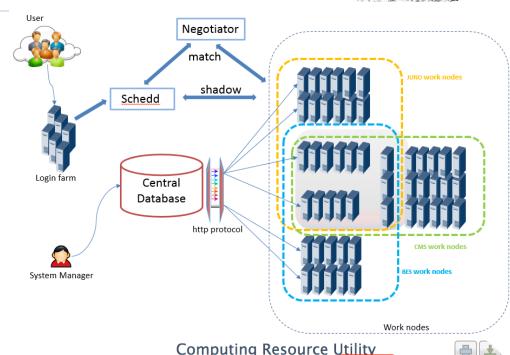
- IHEP: Institute of High Energy Physics, Chinese Academy of Sciences.
- IHEP Computing Center: network, computing and storage services provider to the HEP experiments.

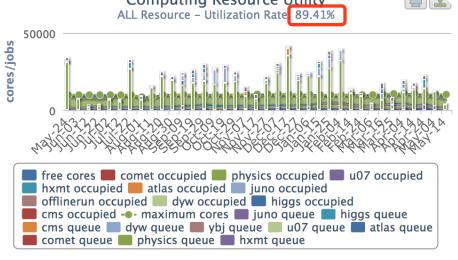
Large High Altitude Air Shower Observatory

Hard X-Ray Moderate Telescope



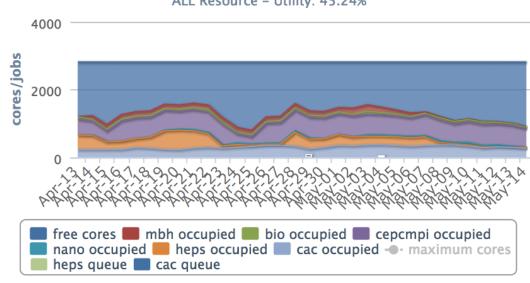
Batch Systems at IHEP




- Computing clusters
 - HTCondor Cluster for HTC computing
 - ~10,000 CPU cores
 - o Avg. 100,000 jobs/day
 - Slurm Cluster for HPC Computing
 - ~2800 CPU core + 8 GPU cards
 - 122TFLOPs
- Login nodes
 - 32 login nodes shared by all users
- A unified job management tool for two clusters

Computing -- HTCondor Cluster

- Resources
 - funded from different experiments
 - shared by all experiments
- HTCondor version: 8.4.11
- Job slots
 - Exclusive job slots: match jobs from the owner
 - Shared job slots: match jobs from all users
- Sharing strategy
 - Jobs are preferred to run on exclusive slots
 - Shared slots are kept for busy experiments
 - Group quota to each experiment, which can be exceeded if there are free shared jobs slots
 - Shared slots are matched according to the relative ratio of quota among the busy groups.
- Job Slots utilization is quite high -- > busy cluster
 - Job slots utilization: ~90%

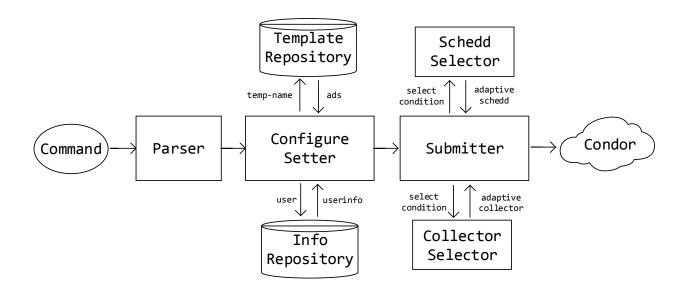

Computing -- Slurm Cluster


Computing Resource Utility ALL Resource – Utility: 45.24%

- Resources
 - 1 master node
 - 1 accounting & monitoring node
 - 125 work nodes: 2,808 CPU cores + 8 GPU cards
- Lower utilization: free job slots most of the time
 - Utilization: ~50%
 - Jobs (2018.1~2018.4)
 - o Jobs: ~5300
 - o CPU hours: ~3 million
- GPU servers procurement
 - NVIDIA Tesla V100, 1 PFLOPs (single precision)
 - Procurement in process, expected to be done in 2018.

CPU * Hours of Jobs

A Unified Job Toolkit -- HepJob



Targets

- To provide a unified method for users to submit and manage jobs
- Simple user interfaces
- To help administers achieving new scheduling policies: new experiment, Container, high priority job, etc.

Implementation

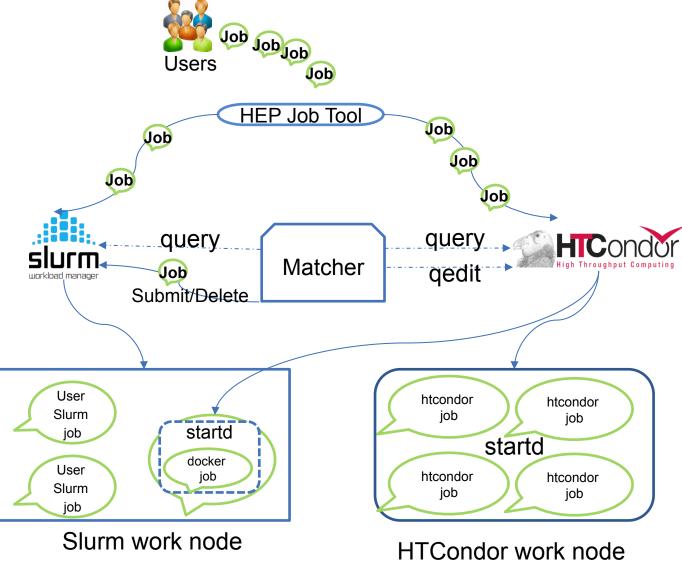
- Based on Python
- Works with IHEP specific environments
 - o Server names, group names ...
 - Standard job templates for each group/ experiment
 - Unified user interfaces for two clusters

Modules of the the HepJob toolkit

Docker Jobs running on the HTCondor Cluster

- Container jobs
 - SL6 is the host OS running on physical machines
 - SL7 requirements from users
 - Some experiments don't want to expose their files to others
- Docker images created to fit versatile requirements
 - Image saved under AFS with ACL accesses
- Jobs submitted with specific options, e.g.:
 - hep_sub -os sl7 -g juno juno_script.sh

HTCondor jobs running on the SLURM Cluster


- HTCondor busy queue vs. Slurm free slots
 - HTCondor jobs → Slurm job slots
- Which types of jobs to be migrated
 - Jobs queues at the end of long queue
 - Users agree to get migrated during job submission
 - o Risk acknowledgement: jobs may get preempted and re-queued

How

- Add extra job attributes to queuing jobs
- Start "startd" daemon on Slurm work nodes
- "startd" is added to HTCondor resources
- Jobs are scheduled by HTCondor to the startd slots at SLURM
- Status : under development

Design

Matcher

• Matcher:

- Python implementation
- HTCondor and Slurm client
 - Submit and delete Slurm job
 - Add attributes to HTCondor jobs

• Function:

- Query free slurm job slots and htcondor queuing job
- o Matching
- Add extra attributes to the job to be migrated
- Submit slurm jobs
- o Delete slurm jobs when preemption is necessary
- Run with crontab

Others

- Migrated job selection
 - User agree the job could be migrated
 hep_sub -hpc -g juno job.sh
 - Select from the end part of the queue
 - More selection policies would be added
- Docker Image
 - SL6 and SL7 docker images created
- Slurm job script
 - Start condor startd daemon under user "condor"
- Startd running in slurm slots: accept jobs with dedicated attributes
- HTCondor and Slurm scheduler: transparent to the schedulers

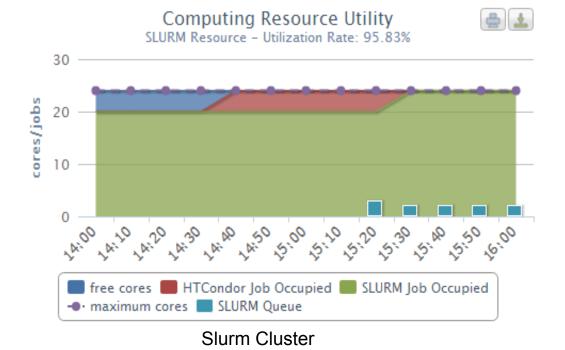
Preemption

• Step:

- New Slurm job coming
- Detected by the matcher
- Delete Slurm jobs running startd
- HTCondor jobs get re-queued
- Job deleted:
 - Latest jobs started would be deleted first

Test

40


Computing Resource Utility HTCondor Resource - Utilization Rate: 100%

HTCondor cluster

Next Step

- More migration policies are coming.
- Prepare for the production systems.
- Consider to migrate HTCondor jobs to remote small sites.

Thanks & Comments?