# Group Update

Jonathan Nikoleyczik

Todays update starts on slide 2

#### Current tasks

- Gamma-X events from calibration sources
  - Simulate LZ calibrations and see how they are impacted by gamma-x events
- Phase 1 optical maps
  - Improve the speed and accuracy of Phase 1 sims by adding in a map for S2 events
- Phase 1 Run 7 data analysis
- LUX 100T projection sensitivity paper
- LZ scale model

#### Gamma-X from calibration sources

#### Possible sources:

- AmLi (AmBe)
- <sup>252</sup>Cf
- <sup>228</sup>Th
- <sup>57</sup>Co (As a test)

All are CSD sources. Generate them in CSD tubes, located in the vacuum space, at z=0 (cathode)

| Table 7.0.1: Baseline calibration sources for LZ. |                                     |                            |            |         |
|---------------------------------------------------|-------------------------------------|----------------------------|------------|---------|
| Isotope                                           | What                                | Purpose                    | Deployment | Custom? |
| Tritium                                           | beta, $Q = 18.6 \text{keV}$         | ER band                    | Internal   | N       |
| <sup>83m</sup> Kr                                 | beta/gamma, 32.1 keV and 9.4 keV    | TPC $(x, y, z)$            | Internal   | Y       |
| <sup>131m</sup> Xe                                | 164 keV γ                           | TPC $(x, y, z)$ , Xe skin  | Internal   | Y       |
| <sup>220</sup> Rn                                 | various $\alpha$ 's                 | xenon skin                 | Internal   | N       |
| AmLi                                              | ( <i>a</i> , <i>n</i> )             | NR band                    | CSD        | Y       |
| <sup>252</sup> Cf                                 | spontaneous fission                 | NR efficiency              | CSD        | N       |
| 57 Co                                             | 122 keV γ                           | Xe skin threshold          | CSD        | Ν       |
| <sup>228</sup> Th                                 | 2.615 MeV $\gamma$ , various others | OD energy scale            | CSD        | N       |
| <sup>22</sup> Na                                  | back-to-back 511 keV γ's            | TPC and OD sync            | CSD        | N       |
| <sup>88</sup> Y Be                                | 152 keV neutron                     | low-energy NR response     | External   | N       |
| <sup>205</sup> Bi Be                              | 88.5 keV neutron                    | low-energy NR response     | External   | Y       |
| <sup>206</sup> Bi Be                              | 47 keV neutron                      | low-energy NR response     | External   | Y       |
| DD                                                | 2,450 keV neutron                   | NR light and charge yields | External   | N       |
| DD                                                | 272 keV neutron                     | NR light and charge yields | External   | Y       |
| <sup>133</sup> Ba                                 | 356 keV gamma                       | OD and TPC                 | CSD        | N       |
| <sup>60</sup> Co                                  | 1173, 1333 keV gamma                | OD, TPC energy scale       | CSD        | N       |
| <sup>124</sup> Sb                                 | 23 keV neutron                      | low-energy NR response     | External   | N       |

#### Calibration results (Cf252)







#### Calibration results (Cf252) Single Scatter and FV cuts



# Calibration results

- AmLi (AmBe)
  - Only AmBe working in BACCARAT
  - Results are similar to shown for <sup>252</sup>Cf
- <sup>252</sup>Cf
  - Little impact of gamma-x at low energies
  - Potentially 1% gamma-x contribution at higher energies
- <sup>228</sup>Th
  - Events seen are near the walls
  - None are gamma-x
  - $\circ$  Nice ER band S1/S2 spectrum
- <sup>57</sup>Co
  - $\circ$  2/2,000,000 events made it into the liquid
  - Neither of them were gamma-x

## Phase 1 optical maps

- Used the scripts from Amy to make maps of ~10 million photons distributed in the liquid xenon for S1s and in the gas for S2s
- Implemented in BACCARAT
- Leaves LZ sims intact and unaffected
- Simply calls the phase 1 map instead if running phase 1 sims

#### Phase 1 photon maps (S1)



Example of a single PMT

Combined light collection efficiency Avg: 14.8% With QE: ~4.4%

#### Phase 1 photon maps (S2)



Combined light collection efficiency Avg: 24.7% With QE: ~7.4%

#### LCE as a function of depth



#### LCE as a function of radius



### Time maps included

Time maps are needed by BaccMCTruth so needed to be simulated separately.

Shown here for S2 events.



Distance from top PMT (mm)

#### Phase 1 Run 7 analysis

### 100 T sensitivity projections

# LZ Scale Model

Ready to 3D printing modifications.

Need 3D printer specs to adjust minimum thicknesses, overdraft



