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Todays update starts on



Current tasks

e Gamma-X events from calibration sources
o Simulate LZ calibrations and see how they are impacted by gamma-x events

e Phase 1 optical maps
o Improve the speed and accuracy of Phase 1 sims by adding in a map for S2 events
e Phase 1Run 7 data analysis

e LUX10OT projection sensitivity paper
e |Z scale model



Gamma-X from calibration sources
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Calibration results (Cf252

P 4 - TDRAnalysis Calib Source Cf252 Normal Events
TDRAnalysis Calib Source Cf252 All Events TDRAnalysis Calib Source Cf252 Gamma X FFR energy deposits Y
FFR energy deposits FFR energy deposits
E 150 6 5 N=15766
Iglsws 5 " ONEST LZ ER
ibNEST LZ ER ~ 100 P 0te IbNEST LZ NR
bNEST LZ NR € € = ibNEST LZ NR 3
£ 35 s 8
50 Q
N 20
1 o
0 10 ~
ey 0 a 0 2000 4000 a i
2
g o8 2000 ;woo 2 33 7 (cm?) g 102
v [ 2 (cm?) 8 £ g2 é
é 3 3 8 Primary Particle Positons 2
o Primary Particle Positons g’ 2 -
E 1
N
10°
100 . 2000 4000
200 :000 X0 000 4000 r (cm?)
2 (cm?) s1 )
r (cm?)
- FFR Energy Spectrum RFR Energy Spectrum Doke Plot FFR
= Doke Plot FFR and RFR Doke Plot RFR Doke Plot FFR P 10t ~
[4 2 Doke Plot FFR and RFR Doke Plot RFR Doke Plot FFR == All events == Allevents 2
iij I} 2 £ ~ = Normal Events Normal Events £
+ &2 & w 2 2 1 u
'3 w w + & i —a
& S 35 o ui Uy i)
u %) %) i = = 2
3 st k) =) 2 ) 2
2 2 4 = 2 °
) o o A 3 2 -
k) o o [0} o o
& o 0 0 < ° ° 5 0 75 0 5 0 75 10 35 40
o 1 2 3 4 2 4 35 40 & Energy (keV) Energy (keV) 10g10(S2/Esr)
10910(S2/(E¢ratErrr)) log10(S2/Erer) log10(S2/Essr) 2 ! 2 3 2 ¢ 325 350 375 400
10910(S2/(Errr+Errn)) 10910(S2/Ere) 10g10(S2/Eren)
FFR Energy Spectrum RER Energy Spectrum Total Energy Spectrum
FFR Energy Spectrum RFR Energy Spectrum Total Energy Spectrum
=l events - Al events = Al events
All Events All Events All Events = Al events == Al events == Al events
Gamma X Gamma X Gamma X
0 %5 50 75 100 0 25 50 75 10 0 25 s 75 100
Energy (keV) Energy (keV) Energy (keV) 0 25 0 75 100 0 25 50 75 100 0 25 50 75 100
Energy (keV) Energy (keV) Energy (keV)




Calibration results (Cf252) Single S
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Calibration results

e AmLi (AmBe)
o  Only AmBe working in BACCARAT
o Results are similar to shown for 2°2Cf

° 252Cf

o Little impact of gamma-x at low energies
o Potentially 1% gamma-x contribution at higher energies

o 228Th

o Events seen are near the walls
o None are gamma-x
o Nice ER band S1/S2 spectrum

Y 57CO
o 2/2,000,000 events made it into the liquid
o Neither of them were gamma-x



Phase 1 optical maps

e Used the scripts from Amy to make maps of “10 million photons distributed
in the liquid xenon for S1s and in the gas for S2s
Implemented in BACCARAT

e Leaves LZ sims intact and unaffected

e Simply calls the phase 1 map instead if running phase 1 sims



Phase 1 photon maps (S1)
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Phase 1 photon maps (S2)
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LCE as a function of depth
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LCE as a function of radius

S1 LCE vs radius
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Time maps included

Time maps are needed by
BaccMCTruth so needed to be
simulated separately.

Shown here for S2 events.
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LZ Scale Model

Ready to 3D printing
modifications.

Need 3D printer specs to
adjust minimum thicknesses,

overdraft
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lzrd_sue_raw_20171215T180735_00000.dat

Phase 1 Run 7 analysis
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Amplitude Area plot for the two cases
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Noise Power at different gas test voltages

e Dont see a significant difference
between gas test on and off

e Blue, orange and green are all
the same voltage in Phase 1 with
different voltages in gas test
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Quantities vs. Field values o |
e Plots of RMS amplitude and T
area, and Mean amplitude and : . :
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Signals over time

e Stars indicate PMT signal
mean and rms values

e Blue line is gas test supply
voltage

e Purple line is Phase 1 supply
voltage
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100 T sensitivity projections

e Plan to put spectra into NEST with
LUX data

e Want to focus on major contributors
to the background

o Radon
o Neutrinos

e These are 75% of LZ backgrounds
e Plan to take NEST output and feed
into PLR
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Group calendar

® The calendaris a google g T IR
calendar which means | think o | 5 6 v 8 9 10
you need a google account to AR Hoa E
view it saeaa il
e |dontthink there is a good way === -
to automatically sync with oo z
outlook (sorry) 0 =, i
e | can add your google accounts Uw -
B e |

but | need your email address



Phase 1 Run 7 Analysis

e Trying to correlate Phase 1rates and
noise with the operation of the gas
test

e Divided amplitude area plot into
different populations

e The rate is more correlated with the
total power supply voltage than with
the gas test alone

e See no significant noise power
difference between gas test on and
off
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Population rates over time
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DAQ rate vs. Gas test voltage
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DAQ rate vs. PS voltage

e Combines physical expected rate
increases (P1 grids on) with gas test
voltage increases

e Color corresponds to number of
samples at that point

e Qutliers at low voltage are older
data sets (gas only tests?)
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PSD of waveforms PMT off
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PSD waveforms PMT on
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Gas test on vs off

Histogram of the data shown on the left
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Rates and voltages over time
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Rates and voltages over time
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Rates and voltages over time

Gas Test on, Phase 1 off
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Rates versus voltage

e This is only data when the phase 1
grids are off

e We do see a correlation between the
gas test voltage and the population 3
rate (high area, low amplitude)
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Other updates

e L|LZ Cables QA

O

(@)

Need to have a schedule for cable procurement and assembly by tomorrow
Havent heard back from Bob or Jeff about these dates

e LUX100 Ton projections

(@)

(@)
(@)
(@)

Plan on using libNEST for a generic detector rather than being LZ specific

Means we only need energy spectra

Have to wait for limit code (Quentin) and updated libNEST (Matthew)

Can just use flat background energy spectrum to avoid using LZ sensitivity results
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Pretrigger / Postt
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System Test Analysis

e Looking at reduced Run 7 data

o It’sin a different form than | was expecting (DER output format, not LZAP output format)
o Really only gives waveforms and their start and end time
o Hoping tomorrow’s analysis meeting will clear this up
e Phase 1 optical maps are implemented in BaccMCTruth
o Works for both Phase 1and LZ
o Haven’t pushed to git as the optical map file is hard coded to my directory

o  Where should it be stored? PDSF? CVMFS?
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LUX 100 T projections update

e ER and NR band data as a function of voltage are progressing
e We will stick with a flat ER background and Neutrinos as the dominant NR

background
o There was some discussion of including low energy lines in the ER spectrum but this would only
make the result harder to compare to other experiments and in real WIMP search data a line

would get spread out anyway
e Waiting on Quentin to send his sensitivity code on git
o Need lux git account?
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Phase 1 Run 7 Baselines
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We need a way to determine the baselines in all of these cases




Phase 1 Run 7 baselines

PMT on, grids off, gas test on lzrd_sue_20171215T211008_00000.root

There are three different cases of baselines

shifting during a POD. 107
10*
1. The baseline does not shift significantly
(left side of plot) 94.9% of pods s
2. Baseline shifts slightly (middle right of 102 ;
plot) 5% of pods Lot |
3. POD starts or ends during an event e A
(rightmost bump in plot) 0.1% of pods Absolute baseline difference [Vposttrig — Vpretrig] (MV)

Run 8 should include less of the right most
population. PODs won’t end in the middle of

a signal 39



Phase 1 Run 7 Baselines

. . Start
4 different cases of the baseline 0

. . . PretrigStd >
standard deviation relative to a maxStd maxstd
variable

PosttrigStd >
maxstd

PosttrigStd >
maxStd

Use pretrigger mean and standard

deviation (80 ns before trigger). (] Y 5 3
Posttrigger mean and standard ves e —
. . . Pretrig'std > | base!ine = fit between pr'etrig
deviation (160 ns after trigger ends: PosttrigStd [ ygs | Posttrighean 4 and pecting
comes back below trigger value) . 7
0
\
. . baseline =
Color matches plots on following slides pretrightean
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Changing the MaxStd Parameter

At higher maxStd the linear fit method is
used. This allows more variable cases to
get a linear fit

At lower maxStd the method that uses the
lower Standard deviation of pre and post
trigger are used

Baseline fitting method lzrd_sue_20171215T211008_00000.root

106 J

105 J

104 J

[ MaxStd=50 Counts
[ MaxStd=20 Counts
[ MaxStd=10 Counts

T T T

0: 1: 2:

3: 4:

None both>maxpre>max, linefit pre<max,

post<max

Method Used

post>max

41



Baseline subtracted waveforms
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Baseline subtracted waveforms (large differences

Before baseline
subtraction
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Pulse Amplitude Area comparison

Amplitude (mV)

103 r

102 J

101 §

lzrd_sue_raw_20171215T211008_00000.dat
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Area (mV ns)
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Old method: Just used
pretrigger mean

Amplitude (mV)
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Next Steps

e Confirm with SLAC that this is an acceptable method for computing the
baseline
e Implementin LZAP
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Phase 1 Run 7 Baselines

Looking at data after first
pass of cuts (on pdsf)

PMT on, grids off, gas test on lzrd_sue_20171215T211008_00000.root  PMT on, grids off, gas test on lzrd_sue_20171215T211008_00000.root
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Events in different populations

Low mean difference events

would Iikely not benefit from a Low mean diff Mid. mean diff High mean diff

linear fit to the baseline Low postTrigRMS 90.91% 3.13% 0.00%
Middle mean difference could Middle postTrigRMS 4.01% 1.72% 0.07%
use a baseline fit High postTrigRMS 0.01% 0.10% 0.06%
High mean difference COU|deSt Low preTrigRMS 93.47% 3.66% 0.05%
be thrown out, very small Middle preTrigRMS 1.45% 1.19% 0.03%
fraction of events without High preTrigRMS 0.00% 0.09% 0.06%

needing to change the code
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How to implement this in LZap

Make a new POD for the pretrigger and posttrigger of an event

LZap will calculate RQs for those subPODs just like any other POD

Use those RQs to adjust the main POD as necessary

Need to wait on the necessary RQs (POD mean and RMS) to be built into LZap
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Working with LZap

Large program distributed over “20
modules each with many files and
corresponding functions

No good way to track current functions
and variables available to your install
of LZap

| wrote a program to list all the
functions and variables associated with
your working version of LZap

Comment. I

P RawDataModel
P PhysicsDataModel
< Mercury
b Mercury
D MercuryOutput
P MCTruthDataModel
< LZapKemel
TimeStamp
D LzReadCondHandleBase
P LzReadCondHandle
< Lzlnterval
< public

Lzinterval { const Lzinterval & ths ) ;
LZap:Lzinterval & operator = ( const LZap:Lzinterval & rhs ) ;
virtual ~Lzinterval () ;
hool contains ( const Lzinterval & rhs ) const ;
LZap:LzTimeStamp getDuration () const ;
const LZap:LzTimeStamp & getBegin () const ;
const LZap:LzTimeStamp & getEnd () const;
LZap:Lzinterval getintersection ( const Lzinterval & rhs ) const ;
bool isContainedWithin ( const Lzinterval & rhs ) const ;
bool isValid () const ;
hool overlaps ( const Lzinterval & rhs ) const ;
< private
Lainterval () ;
Lzap:LzTimeStampm_begin
LZap:LzTimeStampm_end
< protected
void setinterval { const LzInterval & rhs ) ;
D LzDataObject
D Lzalgorithm
< DagStreaming
D SequenceTraits
< DaqTraits
< public
virtual ~DagTraits () ;
virtual unsigned int majorversion () const=0;
virtual unsigned int minorVersion ( ) const = 0 ;
virtual const std::string i ing () const=0;

Create an instance of this class.

Assignment operator.

Destroy this instance of the class.

Returns true if this interval completely surrounds the specified one.

Retumns the duration of this interval as the time since BOT. An invalid interval will return a di
Retums the time when this pulse begins

Returns the time when this pulse ends.

Returns the intersection of this interval and the specified one. If the two intervals do not ove
Returns true if the specified interval completely surrounds this one.

Returns true if this interval is valid.

Returns true if this interval and the specified one overlap.

Suppress default.
The time when this pulse begins.

The time when this pulse ends.

Sets this object to match the supplied Lzinterval

Destroy this instance of the class.

Returns the version of the event format as a string.




Radon Emanation (A real physics problem)

Radon is being released from an object at a rate R that radon is then able to decay
with a halflife of 3.8 days. What is the number of atoms remaining in your volume

as a function of time?
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AN(t)
—~ =R=AN()

AN (1)

Radon Emanation Solution R

log(R — AN
_%wﬁt

R — At
See that regardless of the Radon emanation N(t) =x +Cee

rate (R) It always takes the same amount of z((ii j;(l—)‘e—“)

time to reach an equilibrium number of A1) e

radon atoms. - :521g;243(1_e_0_1824on)

That is why radon emanation measurements | _——— |

need to be run for Y30 days to reach this z 4 :

equilibrium value g _
g 1 1
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LZap Baseline Study

e Have a basic method to calculate the baselines using data processed through
LZap

e Still waiting on RMS to be implemented as an RQ
[
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LUX Projections Update

e We have the ER and NR bands as a function of field
e From that we get the leakage fraction (using cut and count)

e PLR code is progressing

o Quintin was going to use the LZ PLR but thinks it’'s too complicated for what we need so he
might just write his own
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