Run 8 S1-z dependence

Jonathan Nikoleyczik

Todays update starts on slide 12

Data used

- /projecta/projectdirs/lz/data/afan/SueRQs/run8/pr10001/lzrd_sue_HT_2018031 7T005044/
 - Thoron
 - Cuts were defined using file 00050. It's in the middle and I assume that the Thoron source doesn't change significantly over this period (the rate may but the position in S1, S2, drift time space does not)

Expectations

- Thoron is a 6.4 MeV alpha which should give a maximum of about 5000 S1 and 1x10⁶ S2 counts (assuming roughly LZ properties)
- Expect S1 depth dependence of a factor of 3 over the length of the detector
- Expect maximum drift time of 300 microseconds

Cuts Applied

- A pulse within the event is inside a box in the amplitude / area plot.
 - \circ ~ I selected this in the field off data (just S1). The peak that Jacob showed a few weeks ago
- Another pulse must be within a box in amp. / area that includes S2s (only showed up in field on data) OR is classified as an S2 by LZap
- Has 1 S1 and >=1 S2
- 0 μs< S2-S1 < 500 μs
- Only has 1 drift time meeting all of these qualifications

Thoron Cut

Blue outline is the S1 cut for thoron. Nice and compact. Implies little z dependence

Red outline is the S2 cut (for all events) hard to see a blob in s2 events

S2-Z dependence (long set with source off)

Electron Lifetime

Apologies for the terrible plot The fit is bad because the noise is just barely below the signal

From this fit the electron lifetime is about 40 μs

Does that seem reasonable? Seems low to me

Drift time

S1-Z dependence

S2 z dependence (thoron source on)

S1 z dependence (thoron source on)

Source off Amp Area plot

Cuts defined

Cuts Continued

rmsWidth

rmsWidth

rmsWidth

lzrd_sue_HT_20180316T032120_pr10001.root

"No source baseline, with fields"

Looks good, electron lifetime very high, >>300 microseconds

Cutting any lower in S1 area introduces significant noise

"Thoron injection started and stopped within"

Data taken about 20 hours later. Used exact same cuts and analysis. Electron lifetime ~40 microseconds.

Possibly a downward trend in lifetime

"Long set after injection finished"

Still has low electron lifetime. Looks more "steady"

