
PLR Code

SIRun4.cxx

• Pretty self explanatory

• Sets up a timer to time the process

• kill warning messages

• Make sure each run uses a different random
seed

• Creates the workspace using the
MakeWorkspace method from
“MakeWorkspace.h”

– Declares the RooRealVars r, S1, log10S2, phi, drift,
mWimp, and xsec and imports into workspace.

– Creates timeBin categories (whatever that means)
and defines exposure for each.

– Returns the workspace

• Uses “ImportSignalModel_5D” from
“ImportSignalModel.h” to import the signal
PDFs nrPop_z[z-slice]_t[time bin]
(RooProdPDF) into the workspace.

• Reads the line corresponding to the current
WIMP-mass from the
“LimitParameters_XSec.txt” text file and sets
the poi variables poimin, poimax, etc.
accordingly

LimitParameters_XSec.txt contents

• Imports the various background PDFs into the
workspace. (I think, haven’t looked too much
into this chunk)

• Creates a new RooRealVar “nSig”

– If useXSec is true, the poi variables from earlier
are used to calculate the value of nSig

– If false, nSig is just something between 0 and 100

• Generating coefficients for each model and
combining them together to form a jumbo
PDF (I think) called “fullModel_timeBin[time
bin]”.

• Together with the top line from the last slide
creates a new SIMUL (whatever that is) from
the four time bin models called “simulModel”

• This whole thing, though, would seem to be a
one-dimensional PDF that tells you how many
total events you should expect.

• Create a new PDF “constraints” which is the
direct product of all of the nuisance parameter
constraint pdfs. (8 or 9 dimensional) Also add it
to the workspace.

• Create a new PDF “modelWithConstraints” that is
a direct product of the simulModel (tells you how
many total events to expect) and the constraints
PDF.

• Creates a RooStats::ModelConfig object so
HypoTestInv demo knows what to do and
imports it into the workspace.

• Defines sets of variables into observables,
global observables, and nuisance parameters.

• Sets parameter of interest

• Calculates the total number of background
events and prints the contributions.

• Creates a ModelConfig object “bModel” from
the one imported earlier into the workspace.

• Creates a RooDataSet “searchData” from data
in a provided root file.

• If the provided file doesn’t have the .root
extension a data set is generated from the
background model. (Though I know from
testing that this doesn’t work correctly)

• … Imports the data set that was just created
into the workspace.

• Sets the poi to a value (look for yourself to see
what)

• Runs the HypoTestInvDemo (the actual PLR)

• To me this is a big black box.

• Note there is no difference between “model”
and “bModel” except that the poi in model
has been set to 0.

• Tells you how long it took

ImportSignalModel_5D

• Sets value of the wimp mass mWimp defined
in “makeWorkspace”

• Makes the wimp mass constant

• Compiles NEST.cxx and makes the functions
available to this file.

• Makes RooSignalPDF.cxx functions available to
current file

• Creates several RooRealVars

• Sets the RooRealVar “noNuisParam” to 1 and
makes it constant (presumably to be used in
turning on and off G2Var)

• Constructs a gaussian pdf called
“G2VarConstraint” if using nuisance
parameters, otherwise setting the RooRealVar
“G2Var” constant.

• Always constructs a gaussian pdf called
“kLindVarConstraint”

• Loop through each time bin and create a pdf
of type “SignalPDF” called “nrPop[time bin]”
for each and add them to the workspace.

RooSignalPDF.cxx

• RooSignalPDF::RooSignalPDF

• Not sure what this is…

Constructor. Just initializing
member variables. Rest
following

• Just check which nucleon we’re using and set
it accordingly.

• Set flag to indicate that we’ve already
calculated the signal model histograms

• Set variables that will be iterated to remember
previous values.

• Create a new histogram object to store the
wimp recoil spectrum.

• Creates a histogram to store the spatial
portion of the PDF for the signal model

• Loop through each “model bin” (only voxelized in
z in reality) (continues in what follows)

• Create a 2d histogram for each bin to store the s1
vs s2 information from the signal model.

• Use “FillEFTSigHistFromFile” to fill each histogram

• Add the histogram to an array of histograms.
(one for each bin)

• Also add the corresponding spatial histogram

ImportSigHists.h

• FillEFTSigHistFromFile

• Set a couple of constants

• Clear the histogram of contents if it for some
reason already has some.

• Open the correct file

• Spit out an error message if the file couldn’t
be opened.

• Grab the correct histogram from the file in
which it was stored

– Create a new histogram

– Fill it with the “get” function

– Close the file

• Grab the data from the temporary histogram
and transfer it into the one passed to the
function.

ImportBkgModel.h

• ImportBkgModel

• Compile RooBkgPDF and allow us to use its
functions in this file

• ‘nuff said

• ¯_(ツ)_/¯

• Initiate loop through time bins and
background types

• Note numBkgs was set to 3 so Ar37 is not
currently used.

• Opens a file to write information into based
on bkg type and time bin

• Creates a PDF of type “RooBkgPDF” named
[bkg type]Pop[time bin] and adds it to the
workspace. (Utilizes RooBkgPDF constructor)

• Closes the file opened earlier to log things.

• Opens the file with the background model.
This file just contains a rooWorkspace.

• Grabs a new workspace “bgws” from the file
just for backgrounds.

• Hard-code scale factor variables.

• Creates a number of arrays (and some
doubles, just for the totals).

– Expectations

– Scale factors

– (whatever this means)

• Populate the simN arrays with data from the
background model.

• Determine the totals from these arrays.

• Open files to keep track of the scale factors.

• Determine the scale factors for each
background based on the simN numbers for
each time bin and the totals.

• Create RooConstVars for each of the
background scale factors and import them
into the workspace.

• Write the scale factors to the previously
opened files and close them.

• Print debug information if DEBUG flag is on

• Record the total number of background
events

• Print out the background numbers to console

• Create RooRealVars for each background number
of events.

• Create a RooRealVar that will remain constant for
the mean of each constraing (ones ending in 0)

• Create RooRealVars for the spread of the
gaussian constraints

• Creates PDFs (gaussian pdfs, names
comptonBottomConstraint etc) to put a
constraint on these backgrounds.

• Close the file containing background
information.

ImportWallModel

• Creates rooRealVars for the number of wall
events, mean, and deviation of the gaussian
constraing pdf.

• Then add these variables to the workspace.

• Creates a gaussian pdf called “WallConstraint”
using the aforementioned variables.

• Makes the functions in RooWallPdf accessable
to this file

• Makes a PDF of type “WallPdf” called
“wallPop[time bin]” for each time bin using
the constructor found for the class RooWallPdf
and adds it to the workspace.

RooWallPdf.cxx

• constructor

• Initialize roofit variables to fed-in values

• Open the appropriate wall model file.

• Retrieve the workspace from the file

• Retrieve a histogram with the background
model from the workspace.

ImportAccidentalModel

• Opens the file containing the accidental S1 vs
S2 model.

• Gets a 2D histogram with the model from the
file (called “tmp”)

• Creates a PDF out of the previously loaded
root histogram and adds it to the workspace.

– Does this by creating a data hist out of the
histogram, then a rooHistPdf out of that dataHist.

• Creates a 3D histogram (intended for use as
the spatial pdf) for each time bin.

• Fills these histograms using the
“FillRvsPhivsDtHist” method.

– Uses the same spatial distribution as RnKr which it
feeds to this method as an argument.

• Creates a roofit pdf (of type HistPdf) out of
this 3d histogram.

• Imports this pdf to the workspace.

• Creates a full 5D pdf (called
AccidentalPop[time bin]) by taking the direct
product of the accidentals pdf and the spatial
pdf just created.

• Hard coded estimate of the number of
expected accidental background events.

• Create roofit variables for the number of
accidental events, the mean, and the
deviation of the gaussian constraint and add
them to the workspace

• Create a gaussian pdf (called
“accidentalConstraint”) based on the
estimates of the number of accidental events
and the constraints and add it to the
workspace.

Import8BModel

• For each time bin, opens the appropriate root
file with the background model.

• Gets the 2D histogram with the B8 S1 vs S2
model from the file (names it tmp)

• Create a roofit pdf out of this histogram and
add it to the workspace (called rhp)

• Creates a 3D histogram (intended for use as
the spatial pdf) for each time bin.

• Fills these histograms using the
“FillRvsPhivsDtHist” method.

– Uses the same spatial distribution as RnKr which it
feeds to this method as an argument.

• Creates a roofit pdf (of type HistPdf) out of
this 3d histogram.

• Imports this pdf to the workspace.

• Creates a 5D pdf (called B8Pop) by taking the
direct product of the two histograms just
created.

• Hard coded estimate of the number of
expected 8B background events.

• Create roofit variables for the number of
background vents, and the mean expected
number and deviation for a gaussian
constraint.

• Import these variables into the workspace.

• Create a pdf (called B8Constraint) that is
meant to constrain the number of these
background events.

ConfigureModel

• Define sets of variables (not sure what this
means, just copying comment )
– Event observables (things events consist of)
– Global observables (expected numbers for each

nuisance parameter)
– Nuisance parameters (the parameters themselves)
– Parameters of Interest

• Create a ModelConfig object that knows about
each of the things we just defined.

• It apparently has functions called “setX” which
is how it knows what is what and what it can
do with what.

• No idea about the first line. Apparently
returns a pointer to the parameter of interest
(the first parameter of interest? Can it take
multiple? How many if that is what first refers
to? Presumably not arbitrarily many if there is
a separate function to access each).

• Creates a model called “bModel.” Sets poi to
0 and adds it to the workspace.

• Not sure what SetSnapshot is all about.

StandardHypoTestInv.C

• StandardHypoTestInvDemo

• Creates an instance “calc” of the
HypoTestInvTool class.

• Sets relevant parameters of the object.

• Run the HypoTestInverter and stick the result
in a HypoTestInverterResult called “r”

• Spits out an error message if running the
hypoTestInverter (or saving the result) didn’t
work.

• Analyze the reults using the “AnalyzeResult”
function from the HypoTestInverterTool.

StandardHypoTestInv.C

• HypoTestInvTool - constructor

• Just initialize a bunch of variables.

StandardHypoTestInv.C

• HypoTestInvTool::SetParameter

Just looks for the parameter given as a string
and changes it to the value passed.

StandardHypoTestInv.C

• HypoTestInvTool::RunInverter

• Loads the data to be used from the workspace

• Spits out an error if it can’t find it, otherwise,
tells you the name of the data set it’s using

• ¯_(ツ)_/¯

• Loads in the background model (bModel) and the
signal + background model (sbModel) from the
workspace

• Checks to make sure that the signal + bkg model
has all the components it’s supposed to have

• Generates a snapshot if the s+b model doesn’t
already have one.

– I have no idea what this actually means, however.

• Sets all nuisance parameters to constant if the
“noSystematics” flag is set true.

• If there is no background model (or the same model
was provided as both signal and background), generate
one by cloning the s+b model and setting poi to 0.

• Set snapshot of the background model (whatever that
means) with poi set to 0, then reset to old value (not
sure why this is done (maybe because it’s a pointer and
so leaving it 0 would damage the s+b model)).

• If the s+b model had poi set to 0, just quit.

• If background model doesn’t have a snapshot
already, generate one by taking one of the s+b
model with poi set to 0.

• Gives you a warning if the s+b model has
nuisance parameters, but does not have
estimates for the values of these parameters
(what this calls “global observables”).

• Sure wish I knew what a snapshot was…

– Surprisingly doesn’t seem very easy to look up.

• Get parameter of interest from s+b model

• Determine whether you want to do a fit based
on your analysis

• Chose the type of minimizer you want to use.

• Leave off here for now, super confusing and
hopefully I can get away without
understanding it fully.

RooBkgPDF.cxx

• RooBkgPDF::evaluate

• So far as I can tell, this is called whenever the
value of the PDF needs to be evaluated at a
point (go figure). Never explicitly called in the
limit code, but invoked implicitly during the
hypo test inversion

• Figure out what bin you’re in (in the spatial 3D
histogram PDF) for a given r, phi, and drift.
– FindBin returns a global bin number
– GetBinXYZ fills the bin number in each dimension into

the argumetns
– GetBinContent returns the value of that bin.

• The volume of the bin in question is calculated.
• Spatial probability is calculated as the value of

the bin divided by the volume of the bin.

• Each “model bin” (combination of x, y, and dt)
has its own s1 vs s2 2D histogram.

• Figure out which model bin we are in (a global
number just incrimented each dt then phi
then r)

• Determine the s1 vs s2 PDF probability (for
the given modelBin).

• Total probability determined by taking the
spatial probability times the energy space
probability (here “erProb”).

RooSignalPDF.cxx

• RooSignalPDF::evaluate

• So far as I can tell, this is called whenever the
value of the PDF needs to be evaluated at a
point (go figure). Never explicitly called in the
limit code, but invoked implicitly during the
hypo test inversion

• Re-Fill the
signal model
hists with the
models from
the
appropriate
file if the
G2Var has
changed from
the value used
in the
currently used
file.

• Re-Fill the
signal model
hists with the
models from
the
appropriate
file if the
kLind has
changed from
the value used
in the
currently used
file.

• Each “model bin” (combination of x, y, and dt)
has its own s1 vs s2 2D histogram.

• Figure out which model bin we are in (a global
number just incremented each dt then phi
then r)

• Figure out what bin you’re in (in the spatial 3D
histogram PDF) for a given r, phi, and drift.

– FindBin returns a global bin number

– GetBinXYZ fills the bin number in each dimension into
the argumetns

– GetBinContent returns the value of that bin.

• The volume of the bin in question is calculated.

• Spatial probability is calculated as the value of
the bin divided by the volume of the bin.

• Determine the s1 vs s2 PDF probability (for
the given modelBin).

• Total probability determined by taking the
spatial probability times the energy space
probability (here “NRProb”).

• Return the evaluated probability.

