Building the Basic Structure For An Stntuple Analysis (Version 1)
(CDF Collaboration)

Jason Nett
(Dated: 13 September 2008)

The motivation for this note grew out of my desire for it to have already existed as I setup my
own Stntuple analysis modules. Unlike the pen and paper study of physics, much of the structure
of computing must simply be provided. The answer to a problem is often not an idea that can be
logically deduced; rather, it’s a result of an aribrary choice made by a person to 'make it work.” As
such, there is a need for a comprehensive source of information that allows the novice to produce a
working structure for an Stntuple analysis module. I provide here step-by-step instructions to start
from scratch and end with an empty, though functioning, Stntuple module. We will see as we work
through the minutia that doing so requires many seemingly arbitrary steps indeed.

Following this document step-by-step, the reader should be able to arrive at a skeleton Stntuple
analysis including an user-built ntuple, a module that fills this ntuple with information from an
Stntuple dataset, and an analysis module that is capable of processing the information stored in the
ntuple. All that is required to begin is a home directory, access to the CDF software framework,

and proper access to Stntuple data files.

Contents

Disclaimer

The First Compilation

Creating a New Release and its Directories

The Source Code and Header Files
MyModule::BeginJob()
MyModule::BeginRun()

Symbolic Linking and the Header

MyModule _linkdef.h

The GNUmakefile files

The empty .refresh file

Compile

The First Run
rootlogon.C and Loading MyAnalysis ’ shared library
Retriving a set of test data from SAM/Accessing SAM data directly
The Driver Script
Run

The First Tasks

ClassDef and Classimp : Making Your Class a ROOT Class

Declaring Static Data Members

Access The Data Blocks

Make and Fill a Histogram

Create a Basic Ntuple

Create a Better Ntuple For A More Complex Analysis
Storing an Object to an Ntuple
Storing an Array of Objects in an Ntuple
Building an Analyzer Module for an Ntuple

Common errors
Changing Code within Stntuple/loop

The missing separator error

References

N OO O U N NN [N}

= = O 00 0o
= O

11
12
12
14
15
19
21
23
25

29
29
29

29

DISCLAIMER

The approach I describe below should in no way be interpreted as being the only method to produce an functioning
Stntuple module. Also, if any mistakes are found and need correcting, if any necessary information is missing, if
someone wants to contribute further exposition explaining a topic, or if someone comes across (and solves) a nasty
error that others might also impale themselves on, please email Jason Nett at jnett@wisc.edu. Nevertheless, I do
not mearly attempt to describe the necessary steps in a disjointed manner; rather, the following should at least be
sufficient to produce a function, compiling, running module inheriting from TStnModule , an ntuple module that the
previous module fills with Stntuple data, and an analysis module capable of retrieving information from the ntuple and further
processing it in some way. Every necessary command is given explicitly.

THE FIRST COMPILATION
Creating a New Release and its Directories

[NOTE: DO NOT ATTEMPT TO COMPILE UNTIL THE “COMPILE” SECTION. YOU WILL RECEIVE
ERRORS UNTIL ALL PREVIOUS SECTIONS ARE COMPLETED.]
We begin as we do for so many tasks, breath life into a test release.

setup cdfsoft2 6.1.4
newrel -t 6.1.4 stn_example
cd stn_example

Next, we remove the environmental variable USESHLIBS [1].
unsetenv USESHLIBS
We also require a copy of the Stntuple package. This usually takes at least 10-20 minutes to compile.

addpkg Stntuple dev_243
gmake Stntuple.dev_243 MODE-=reading
gmake Stntuple._ana USESHLIBS=1

Many new folders just appeared after compiling Stntuple. Most of these can be ignored for now. The rootlogon.C file is
important for loading the shared libraries to ROOTand addressed below.

If we cd include we see that several symbolic links have appeared where before there were none. We will be adding one
of our own by hand later.

I've found that if working in tsch , as opposed to bash shell, the USESHLIBS=1 add-on is critically important during
compilation of one of the branches of Stntuple or the module we will be creating shortly. Without it, the necessary shared
libraries that are loaded into ROOTare not available in an updated form. When working in bash shell, it is not necessary.

Now we need to create the folders in which our own analysis will be conducted. There is a conventional method for how
to construct these directories and what to put in them that is not necessarily critical for functionality, but I will follow the
convention anyways. First, create a folder for our personal analysis and enter it

mkdir MyAnalysis
cd MyAnalysis
Second, create the following directories:
mkdir MyAnalysis
mkdir src
mkdir dict
mkdir drivers
mkdir data

MyAnalysis ~ will contain the header file of the module MyModule that we will create shortly. src will contain the source code
of MyModule. dict will contain a file called MyModule _linkdef.h that is critical for compilation. drivers will contain
the ROOTscript that controls the execution of our module. data is the directory where we will put a sample Stntuple data set
that our analysis module will access. All these are explored in further detail below.

The Source Code and Header Files

Let’s enter the directory \ stn _example \ MyAnalysis \ src \ . Create a file to contain our source code:
xemacs MyModule.cc &
Similarly, in the directory \ stn _example \ MyAnalysis \ MyAnalysis \ create the header file for our new module:

xemacs MyModule.hh &

Let’s begin filling in some basic structure for the header file (beware the dangers of blindy copy and pasting; differences can
creep in):
#if 'defined (_CINT_) || defined (_MAKECINT)

#include "TH1.h"

#include "TH2.h"

#include "TProfile.h"

#include <TPostScript.h>

#include <Stntuple/loop/TStnModule.hh>
#include <Stntuple/obj/TCalDataBlock.hh>
#include <Stntuple/obj/TStnTriggerBlock.hh>
#include <Stntuple/obj/TStnPhotonBlock.hh>
#include <Stntuple/obj/TStnJetBlock.hh>
#include "Stntuple/obj/TStnJetProbBlock.hh"
#include <Stntuple/obj/TStnElectronBlock.hh>
#include <Stntuple/obj/TStnMuonBlock.hh>
#include <Stntuple/obj/TStnMetBlock.hh>
#include <Stntuple/obj/TStnDBManager.hh>
#include <Stntuple/obj/TStnRunSummary.hh>
#include <Stntuple/obj/TStnTrackBlock.hh>
#include <Stntuple/obj/TStnVertexBlock.hh>
#include <Stntuple/obj/TCesDataBlock.hh>
#include <Stntuple/obj/TStnClusterBlock.hh>
#include <Stntuple/obj/TDcasDataBlock.hh>
#include <Stntuple/obj/TPhoenixElectronBlock.hh>
#include <Stntuple/obj/TGenpBlock.hh>
#include <Stntuple/obj/TSvtDataBlock.hh>
#include <Stntuple/alg/TStntuple.hh>
#include <Stntuple/obj/TStnSecVixTagBlock.hh>
#include <Stntuple/obj/TStnTriggerTable.hh>
#include <Stntuple/obj/TStnEvent.hh>

#endif

#include <map>
#include <set>
#include <vector>
#include <iostream>

using std::map;
using std::set;
using std::vector;
using std::cout;
using std::endl;

class MyModule: public TStnModule

public:
string mode;
“MyModule(){}
MyModule();

/I Re-implement the TStnModule methods
int BeginJob();

int BeginRun();

int Event(int ientry);

int EndJob();

protected:

8
In the source code write:

#include "TF1.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TText.h"
#include "TMath.h"
#include "TStyle.h"
#include "TChain.h"
#include "TRandom.h"
#include <set>
#include <iostream>

using namespace std;

/I if the following line doesn’t work, see the symbolic link s ection
#include "MyAnalysis/MyModule.hh"

#include "Stntuple/obj/TStnTriggerBlock.hh"

#include "Stntuple/obj/TStnHeaderBlock.hh"

#include "Stntuple/obj/TStnTrackBlock.hh"

#include "Stntuple/obj/TStnPhotonBlock.hh"

#include "Stntuple/obj/TStnElectronBlock.hh"

#include "Stntuple/obj/TStnJetBlock.hh"

In the public:

#include "Stntuple/obj/TStnMuonBlock.hh"
#include "Stntuple/obj/TStnMetBlock.hh"
#include "Stntuple/obj/TStnRunSummary.hh"
#include "Stntuple/loop/TStnAna.hh"
#include "Stntuple/loop/TStninputModule.hh"
#include <Stntuple/obj/TStnNode.hh>

/IConstructor

MyModule::MyModule():TStnModule("MyModule","MyModul

int MyModule::Event(int ientry)

std::cout << "MyModule::Event" << std::endl;

return 0;

}

int MyModule::BeginJob()
{

return 0;

int MyModule::BeginRun()

return 0;

}

int MyModule::EndJob()
{

return 0;

}

xemacs Stntuple/loop/TStnModule.cc &

/I StnTuple Data blocks
TStnElectronBlock *
TStnMuonBlock *
TStnMetBlock *
TStnJetBlock *
TStnJetProbBlock — *
TCalDataBlock *
TStnTrackBlock — *
TCesDataBlock *
TStnClusterBlock *
TStnPhotonBlock — *
TStnVertexBlock
TDcasDataBlock *
TPhoenixElectronBlock
TStnTrackBlock — *
TStnTrackBlock — *
TGenpBlock *
TStnTriggerBlock *
TSvtDataBlock *
TStnTriggerTable *
TStnSecVixTagBlock — *
TStnRunSummary *

Within MyModule::BeginJob

TString name = GetName();
if (name.Contains("data”) || name.Contains("DATA") || na

cout << "
cout << "

fElectronBlock
fMetBlock
fMuonBlock
fCalData

Notice that each of these functions has a return O;

section of the header file write:

fElectronBlock;
fMuonBlock;
fMetBlock;

fJetBlock;
fJetProbBlock;
fCalData;

fTrackBlock;
fCesDataBlock;
fClusterBlock;
fPhotonBlock;
fVertexBlock;
fDcasDataBlock;
fPhoenixElectronBlock;
fPhoenixSeedTrackBlock;
fPhoenixSiTrackBlock;
fGenpBlock;
fTriggerBlock;
fSvtDataBlock;
ftrigtable;

fSecVixTag;
runSummary;

of the source code write:

= (TStnElectronBlock

= (TStnMetBlock *)
(TStnMuonBlock)
(TCalDataBlock *)

e}

MyModule::BeginJob()

me.Contains("Data")) mode ="data";
" << name << endl
" << mode << endl;

name =
mode =
RegisterDataBlock("ElectronBlock","TStnElectronBlo
RegisterDataBlock("MetBlock","TStnMetBlock™);
RegisterDataBlock("MuonBlock","TStnMuonBlock");
RegisterDataBlock("CalDataBlock","TCalDataBlock");

The first thing to note is that this module inherits from TStnModule . So if we go to the top directory of this release and
open TStnModule.cc

we find empty functions by the same name as above. These in turn are called by TStnAna , which controls the event loop.
which must be the last line of the function. If execution does not reach
this line, then TStnAna knows that something has gone wrong and will print an error. See the section for the driver script for
more details.

Any Stntuple analysis module will require the ability to access data from the Stntuple data blocks and will utilize the usual
beam position corrections for each run of data input. The following two subsections describe this setup.

ck™);

fletBlock = (TStnJetBlock *) RegisterDataBlock("JetBlock","TStnJetBlock");
fJetProbBlock = (TStnJetProbBlock *) RegisterDataBlock("JetProbBlock","TStnJetProbBlock ")
fDcasDataBlock = (TDcasDataBlock *) RegisterDataBlock("DcasDataBlock","TDcasDataBlock");
fClusterBlock = (TStnClusterBlock *) RegisterDataBlock("ClusterBlock","TStnClusterBlock ");
fCesDataBlock = (TCesDataBlock *) RegisterDataBlock("CesDataBlock","TCesDataBlock");
fPhotonBlock = (TStnPhotonBlock *) RegisterDataBlock("PhotonBlock”,"TStnPhotonBlock™) ;
fTrackBlock = (TStnTrackBlock *) RegisterDataBlock("TrackBlock","TStnTrackBlock");
fVertexBlock = (TStnVertexBlock *) RegisterDataBlock("ZVertexBlock","TStnVertexBlock");
if (mode=="data")

fTriggerBlock = (TStnTriggerBlock *) RegisterDataBlock("TriggerBlock", "TStnTriggerBlock ")
else

fTriggerBlock = (TStnTriggerBlock *) RegisterDataBlock("TrigSimBlock", "TStnTriggerBlock ");
fPhoenixSiTrackBlock = (TStnTrackBlock *) RegisterDataBlock("PROD@PhoenixSI_Tracking","TStnT rackBlock");
fPhoenixElectronBlock = (TPhoenixElectronBlock *) RegisterDataBlock("Phoenix_Electrons","TPhoenixEle ctronBlock");
fPhoenixSeedTrackBlock = (TStnTrackBlock *) RegisterDataBlock("PROD@Phoenix_Tracking","TStnTra ckBlock™);
fGenpBlock = (TGenpBlock *) RegisterDataBlock("GenpBlock","TGenpBlock");
fSvtDataBlock = (TSvtDataBlock *) RegisterDataBlock("SvtDataBlock","TSvtDataBlock");
fSecVixTag = (TStnSecVtxTagBlock *) RegisterDataBlock("SecVtxTagBlock","TStnSecVixTagB lock™);

/I check for datablocks that are null
TObjArray * nodes = GetAna()->GetEvent()->GetListOfNodes();

for (int i=0; i< nodes->GetEntries(); i++)

{
TStnNode * n = (TStnNode *) nodes->At(i);
cout << (n->GetBranch()->GetName()) << " at " << n->GetData Block() << endl;
if (In->GetDataBlock())
{
cout << " Error : Did not find Branch " << n->GetBranch()->Get Name() << endl;
exit(0);
return O;
Of course, return O; should only appear once in each function.

MyModule::BeginRun()

In practice, the beamline is constantly shifting within some small area of a plane perpendicular to it. This exact location
of the beamline shifts from one run to the next as well as within the execution of a run. As such, the timing information of
particles emitted from the collisions in the beam require precise knowledge of where the beam is. Taking this into account is
the purpose of the following code. In the public section of the header file, write:

std::set<std::string> inputfiles;
TStnBeamPos* beampos_cot;
TStnBeamPos* beampos_svx;

Within MyModule::BeginRun of the source code, write:

/I Get the trigger table for this run.

TStnDBManager * dbm = TStnDBManager::Instance();

ftrigtable = (TStnTriggerTable *) dbm->GetTable("TriggerTable");

beampos_cot = (TStnBeamPos *) dbm->GetTable("CotBeamPos");

beampos_svx = (TStnBeamPos *) dbm->GetTable("SvxBeamPos");

/I maintain a list of all input files

TChain * ¢ = GetAna()->GetinputModule()->GetChain(); //get get ge t get get get
inputfiles.insert(string(c->GetFile()->GetName())); /l(we love OO programming)
TStnRunSummary+* rs = (TStnRunSummary *) dbm->GetTable("RunSummary");

return O;

Symbolic Linking and the Header

Recall the line
#include "MyAnalysis/MyModule.hh"

in the source code. It would not work without the following.
Go back to the top directory of the release and enter the include folder. Once there, type

In -s "myhomedirectory/stn_example/MyAnalysis/MyAnaly sis MyAnalysis

to create what’s called a “symbolic link” to the header file’s directory. This will allow the source code to know where to look
for its header file.
If this is done properly, you should be able to type Is -all and see a line similar to:

Irwxrwxrwx 1 jnett80 cdf 48 Jul 24 00:30 MyAnalysis -> /home/ jnett80/stn_example/MyAnalysis/MyAnalysis/

MyModul el i nkdef . h

Go to the directory \ stn _example \ MyAnalysis \ dict \. Create a file:
xemacs MyModule_linkdef.h

It is very important to follow the naming convention. Within this file type:

#ifdef _ CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class MyModule;
#endif

For more complex analyses that contain many modules, it is customary to have a separate * _linkdef.h file for each class.
We will see examples in the “The First Tasks” section when the construction of ntuples is addressed.

The GNUmakef i | e files

The control of compilation is guided by the GNUmakefile ’s, and several are required. There should already exist a
GNUmakefile in the top directory of the release containing simply:

include SoftRelTools/lGNUmakefile.main

Next, change directories to our analysis folder cd MyAnalysis . There should not already be a GNUmakefile here so we
make one: Xemacs GNUmakefile & . Copy into this:

Makefile for Examples package

#

uses SoftRelTools/standard.mk

#

HH S A R R R R HH

subdirectories
SUBDIRS = src dict

ifdef USESHLIBS
LINK_SHARED = 1
endif

export LINK_SHARED

HIHHHHHH R R R HHHHHHHEHH
include SoftRelTools/standard.mk

At the moment, we only have code that requires compilation in the folders src and dict . Later in your analysis you will likely
have other folders containing modules that require compilation. At that point, the names of the folders that contain them will
have to be added to the SUBDIRSIine above.
Change directories to the src folder and create another file with the same name: xemacs GNUmakefile & . Put in this
file:
Makefile for Examples package
#

uses SoftRelTools/standard.mk
#

file lists (standard names, local contents)
include file products
INC =

library product

ifdef LINK_SHARED

SHAREDLIB = libMyAnalysis.so
else

LIB = libMyAnalysis.a
endif

LIBCCFILES = $(filter-out $(skip_files), $(wildcard *.CC))

subdirectories
SUBDIRS =

BINS =

include PackagelList/link_all. mk

include SoftRelTools/standard.mk
include SoftRelTools/arch_spec_root_minedm.mk
include SoftRelTools/refresh.mk

It is critically important to follow the naming convention for the library names. The name must start with lib , then the name
of the analysis folder (not the name of the module), then end with .so or .a .
Lastly, go to the dict folder and create yet another GNUmakefile . In this one, put

LINK_SHARED_MODULES = yes
ifdef LINK_SHARED

SHAREDLIB = libMyAnalysis.so
else
LIB = libMyAnalysis.a
staticlib_o_dir = $(sharedlib_o_dir)
endif
lib_o_dir = $(sharedlib_o_dir)
skip_files =
LIBCXXFILES = $(filter-out $(skip_files), $(wildcard $(I ib_o_dir) *_dict.cxx))
HAHH T A R R BHH TP
CINT_SUBDIRS = $(SRT_TOP)/MyAnalysis:$(SRT_TOP)/MyAna lysis/MyAnalysis:$(SRT_TOP)/include/MyAnalysis/MyAn alysis

vpath %.hh .:$(SRT_TOP)/MyAnalysis/MyAnalysis
vpath %.h .:$(SRT_TOP)/MyAnalysis/MyAnalysis

#override SRT_QUAL := debug

include SoftRelTools/standard.mk
include SoftRelTools/refresh.mk

include SoftRelTools/arch_spec_root.mk
include RootUtils/arch_spec_rootcint.mk

lib: codegen

The empty . refresh file

This part is also critical for successful compilation, but also likely the most easily overlooked. In both the src and dict
directories you need to create an empty file called .refresh

xemacs .refresh &
Once opened, simply hit the space bar once, delete the space, then hit save. This way, the file will exist, but be completely

empty. The “.” at the beginning of the file name leaves this file invisible to the usual IS command, but will show when Is
-all is executed.

Compile

We have now complete all necessary steps to compile (but not yet run) our empty Stntuple module. Go to the top directory
of the release and type

gmake MyAnalysis.nobin USESHLIBS=1
Doing so, I get the following output indicating a successful compilation:

[inett80@nuwm08 “/stn_example]$ gmake MyAnalysis.nobin USESHLIBS=1
<x* nobin * > MyAnalysis

Refreshing libMyAnalysis.so

-- codegen -- CINT HH header for MyModule

Error in <MyModule>: MyModule inherits from TObject but doe s not have its own ClassDef
<x* compiling * > MyModule.cc

<+ building library *x >

<xx compiling ** > MyModule_dict.cxx

<+ building library *r >

The error that appears is not as important as it sounds and not at the moment. We will deal with that in the “ClassDef and
Classimp : Making Your Class a ROOT Class” section below.

THE FIRST RUN
root | ogon. C and Loading MyAnal ysi s’ shared library

If compilation was successfully accomplished, check to see that the shared library of our new analysis was generated. From
the top directory of the release:

cd shlib/Linux2_SL-GCC_3 4/

Listing the files, I see:
libMyAnalysis.so libStntuple_ana.so libStntuple_geom. so libStntuple_obj.so
libStntuple_alg.so libStntuple_base.so libStntuple_lo op.so libStntuple_val.so

So the shared library exists where it should.
Let’s go back to the top directory of the release and open the rootlogon.C file. Upon entering ROOT this file will execute
first as though you were typing each line at the ROOTcommand prompt. Here is what I see:
O

/I rootlogon.C: a sample ROOT logon macro allowing use of ROO T script

I compiler in CDF Runll environment. The name of this macro f ile
/A is defined by the .rootrc file

I

/I USESHLIBS variable has to be set to build Stntuple librari es locally:

/I setenv USESHLIBS 1

/I Feb 12 2001 P.Murat

#include <iomanip.h>

#include <time.h>
/I the line below tells ROOT script compiler
/I where to look for the include files

gSystem->SetincludePath(* -l./include -I$CDFSOFT2_DIR finclude");

/I load in ROOT physics vectors and event
/I generator libraries

gSystem->Load("$ROOTSYS/lib/libPhysics.s0");
gSystem->Load("$ROOTSYS/lib/libEG.s0");
gSystem->Load("$ROOTSYS/lib/libDCache.so0");

/I load a script with the macros
char command[200];

sprintf(command,"%s/Stntuple/scripts/global_init.C" ,
gSystem->Getenv("CDFSOFT2_DIR"));

glnterpreter->LoadMacro(command);

/I STNTUPLE shared libraries are assumed to be
/I built in the private test release area with

/I USESHLIBS environment variable set

/I we always need libStntuple_loop, but the

/I other 2 libs should be loaded in only if

/I we're running bare root

const char * exec_name = gApplication->Argv(0);

if ((strstr(exec_name,"root.exe") = 0) || (strstr(exec_ name,"stnfit.exe") = 0)) {
gSystem->Load("./shlib/$BFARCH/libStntuple_base.so");
gSystem->Load("./shlib/$BFARCH/libStntuple_obj.so0") ;
gSystem->Load("./shlib/$BFARCH/libStntuple_loop.so");

}

if (strstr(exec_name,"root.exe") != 0) {
gSystem->Load("./shlib/$BFARCH/libStntuple_geom.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_alg.so")

gSystem->Load("./shlib/$BFARCH/libStntuple_ana.so")

gSystem->Load("./shlib/$BFARCH/libStntuple_val.so")
}

/I print overflows/underflows in the stat box
gStyle->SetOptStat(11111111);

/I print fit results in the stat box
gStyle->SetOptFit(1110);

/I this line reports the process ID which simplifies

/I debugging

TAuthenticate::SetGlobalUser(gSystem->Getenv("USER");
glnterpreter->ProcessLine(".! ps | grep root");

In the section:

if (strstr(exec_name,"root.exe”) = 0) {
gSystem->Load("./shlib/$BFARCH/libStntuple_geom.so");
gSystem->Load("./shlib/$BFARCH/libStntuple_alg.so")
gSystem->Load("./shlib/$BFARCH/libStntuple_ana.so")
gSystem->Load("./shlib/$BFARCH/libStntuple_val.s0")
}

add the line:
gSystem->Load(“./shlibASBFARCH/libMyAnalysis.so”);
This will load the shared library of our new analysis to ROOTalong with the others.

Retriving a set of test data from SAM/Accessing SAM data directly

If we are to perform a successful run of our new module, we need some Stntuple data to run through it. There are several
ways to access such data and if you already have an Stntuple file to use, most of this section can probably be ignored. I will
provide one possible way to retrieve a data set. This will require access to the SAMdirectories, which requires SAMto be setup
where you are working. I am working (remotely) from one of the Wisconsin group’s computers at CDF, which does have access
to SAM Until recently, our local system did not have SAM so this does not seem to be universal.

SAMfiles are organized first in “books;” each “book” contains “datasets” of some particular type; each “dataset” contains
“filesets;” and each “fileset” contains data “files.” Suppose SAMis available and your group’s webpage has an attractive file
called cc036b44.0001hgsl . You can put the file anywhere you like; I'm putting it in the directory \ stn _example \
MyAnalysis \ data \ by going to that directory and then executing the following lines:

setup sam

setup diskcache_i -q GCC_3 4 3

setup dcap

sam get dataset --fileList="cc036b44.0001hgs1" --group= test --downloadPlugin=dccp

After waiting a while for this set to download into the directory from which I executed the previous commands from I see the
following output:

[inett80@nuwm08 data]$ sam get dataset --fileList="cc036 b44.0001hgs1" --group=test --downloadPlugin=dccp
HeavyConsumer: 07/24/08 12:47:33: INFO : Station is set to ¢ df-caf

HeavyConsumer: 07/24/08 12:47:33: INFO : Created definita tion name def_jnett80_20080724124733
HeavyConsumer: 07/24/08 12:47:34: INFO : Created snapshot 689040

HeavyConsumer: 07/24/08 12:47:34: INFO : Defaulting timeo ut to 3600 seconds

Projectinfo({
’baseProjectinfo’ : BaseProjectinfo({
'personinfo’ : Personinfo({
‘emailAddress’ : ’'jnett@wisc.edu’,
‘firstName’ : 'None’,
‘lastName’ : 'None’,
‘personid’ : 1360L,
‘personStatus’ : ’'active’,
‘uid’ @ 0,
'userName’ : ’jnett80’,
P2
‘projectld’ : 1075035L,
‘projectMode’ : 'unknown’,
‘projectName’ : ’jnett80_20080724124733’,
‘projectStatus’ : ’reserved’,
'snapshotld’ : 689040L,
'stationName’ : ’'cdf-caf’,
‘'workGroupName’ : 'test’,
P2
‘endTime’ : SamTime('NULL’),
'nodeName’ : ‘fcdfsaml.fnal.gov’,

10

‘osPID’ : 5990L,
‘startTime’ : SamTime(1216921655.0),
D

Requesting first file...

dccp dcap://cdfdca3.fnal.gov:25155/pnfs/fnal.gov/usr /cdfen/filesets/NS/NS01/NS0106/NS0106.6/cc036b44.00 Olhgsl .
1300878356 bytes in 294 seconds (4321.05 KB/sec)

Requesting next file...

No more files

The Driver Script

The last major step is to make a ROOTdriver script. It is this script that will be called at the command line, access whatever
data we want to run the module on, and run those modules.
In the directory \ stn _example \ MyAnalysis \ drivers \ make a file myDriver.C and put in it:
#include <iostream>
TStnAna * X;
TChain * inChain;
TStnCatalog * catalog;
TStnDataset * dataset;

void myDriver(int iset = 0, int NEvents=1000000)

gStyle = new TStyle("Plain","Plain");
inChain = new TChain("STNTUPLE");
TString name="none";
if (iset==10)

{

| *
ACCESS A LOCALLY SAVED SET OF DATA
*/

name ="WHIvbb";
inChain->Add(""jnett80/stn_example/MyAnalysis/data/ cc036h44.0001hgs1");
X = new TStnAna(inChain);

}

if (iset == 20)
{
| *
ACCESS A DATASET ON SAM DIRECTLY
*/

/I Name of the "dataset" on SAM we want to access
char » datasetName = "chgslc";

/I This value indicates we want to run over the 1st “fileset" i n the "dataset"
int segment = 1;

catalog = new TStnCatalog();
dataset = new TStnDataset();
char istr[10];

sprintf(istr, "%06i", segment);

/I "cdfpstn" is the name of the "book" the "dataset" is in
catalog->InitDataset(dataset,"cdfpstn”,datasetName, istr,",0,999999);
X = new TStnAna(dataset);

}
MyModule* m = new MyModule();
m->SetName(name.Data());
x->AddModule(m);
x->SetNEventsToReport(100000);
x->Run(NEvents);

}

There are a few things to note. First, the name of the script and the function it contains are both myDriver . Next, it takes
two arguments. The first, iset , is an option that allows easy access to different kinds of data if we have more than one type
that we wish to separately run through our module. Lastly, I've noticed that the tilde (~) tends to disappear when copy and
pasting from this document. Be sure to include the tilde in front of the name of your home directory or the driver script will
not find the data file.

In the case iset=10 , we are running through our module the file that we saved to our local area in the previous section. In
the case iset=20 , we are directly accessing data on SAM to run through our module. For this, notice that we need only three
pieces of information: the “book” name (“cdfpstn”), the “dataset” name (“chgslc”), and the number of the “fileset” we wish
to start running on. The “book” contains the “dataset”, which contains “filesets”, which contains “files”, like the file we saved
in the previous section. [2]

The second argument is the number of events to run through the module. In the driver script, it is important to understand
that TStnAna is the Stntuple module that controls the event loop and runs the data through our module.

11

To run the script, go the the top level of our release and type:
root -I -q “MyAnalysis/drivers/myDriver.C(10,10)" >& | og

which will run 10 events from the WH — [vbb file acquired in the previous section from SAM To run on SAM data directly,
change the first argument to “20”.

Run

Finally, we are ready for a first run of the data. When I execute the driver script as indicated in the previous section, I get:

11804 pts/2 00:00:00 root
11808 pts/2 00:00:01 root.exe

Processing MyAnalysis/drivers/myDriver.C(10,10)...
TStnRun2InputModule::BeginJob Warning - no metadata,
opening all chained files to count entries...

TStnRun2InputModule::BeginJob: chained 1 files, 11540 ev ents
name = WHIvbb
mode =

HeaderBlock at Oxba44110

ElectronBlock at 0xc4196d8

MetBlock at O0xc41d310

MuonBlock at 0xc41b138

CalDataBlock at Oxba44260

JetBlock at 0xc411f80

JetProbBlock at 0xc421148

DcasDataBlock at 0xc40fca0

ClusterBlock at Oxc4laac8

CesDataBlock at Oxba44bf0

PhotonBlock at Oxc41a7d0

TrackBlock at 0xc4110f0

ZVertexBlock at 0xc410f10

TrigSimBlock at Oxc40ea80

PROD@PhoenixSI_Tracking at 0xc411b00

Phoenix_Electrons at 0xc419db0

PROD@Phoenix_Tracking at 0xc4115c0

GenpBlock at 0xc418048

SecVixTagBlock at 0xc41d468

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

----- end job: ---- StnAna
L(TeV) : -1.000
L(live): -1.000
L(offl): -1.000
>>> TStnAna::EndJob: processed 10 events, passed 10 events

THE FIRST TASKS
Cl assDef and C assl np: Making Your Class a ROOT Class

Let’s go one step further and make our class known to ROOT There are a couple simple steps to take with one subtlety.
First, it is necessary to have a constructor with no arguments—otherwise a cryptic error results. As we have already done this,
let’s move on to the header file. Add the following ClassDef line to the end of the class definition:

ClassDef(MyModule,0)
I3
In the source code, add the following ClassImp line after the #include statements:
#include <Stntuple/obj/TStnNode.hh>

/linform ROOT of this class
Classimp(MyModule)

/IConstructor
MyModule::MyModule(): TStnModule("MyModule","MyModul e")

12

Now go back to the top directory of this release to recompile and run as before. See whatever ROOTmanual is current for more
information on Classlmp and ClassDef .

Declaring Static Data Members

This section may seem to be soley a C++ issue rather than an Stntuple issue, but it can be subtle to organize properly and
is also highly relevant to subsequent topics. Many of the errors resulting from improper implementation are not caught by the
compiler, but rather at run time. The resolution of such errors can, therefore, be difficult to rectify.

Static data memebers belonging to a class are sometimes also denoted “class variables.” These are declared within the class
declaration itself and have a unique value for all instances of the class. There are a myriad of reasons one might want to include
such a member, but it’s important to note that there are two steps to creating one. [3] First, we declare the variable under the
public: section of the header file MyModule.hh .

/I Class variable declaration
static const Int_t X;

Second, since header files do not like value-assignment (headers are usually meant only for declarations while implementation is
reserved for the source code) we assign the value of a class variable within the source code MyModule.cc , but in a manner that
the value-assignment is executed once and all of the source code is within it’s scope. So we actually do not put the assignment
inside any function; rather, we customarily assign the value just above the constructor as follows:

#include "Stntuple/loop/TStninputModule.hh"
#include <Stntuple/obj/TStnNode.hh>

/I Class variable value assignment
const int MyModule::x = 1;

/IConstructor
MyModule::MyModule(): TStnModule("MyModule","MyModul e}

Access The Data Blocks

In the “Source Code and Header Files” section earlier we included and declared many Stntuple data blocks in the header
and called RegisterDataBlock during MyModule::BeginJob for each of them. This “registers” the data blocks for our
module, but does not fill them. It may have seemed a bit extraneous at the time, but now we’ll make use of them.

Recall that MyModule::BeginJob executes once before any data is run through our module, but the information must
obviously change for every event—no two events are the same. Hence, we must fill these blocks with event information for every
event in the loop. Let’s create a new function within MyModule that fill the blocks from MyModule::Event

Let’s begin with an example of fill a single data block, the TStnMuonBlock , and later replace it with a loop over all the
data blocks. First, write into the public: section of MyModule.hh

/I Fill the Stntuple data blocks
void FillDataBlocks(int ientry);

Then write the body of this new function in the source code:

/I Fill Stntuple Data Blocks
void MyModule::FillDataBlocks(int ientry)

fMuonBlock ->GetEntry(ientry);
}

And, finally, we must call this function from MyModule::Event

int MyModule::Event(int ientry)
{

std::cout << "MyModule::Event" << std::endl;

/I Fill Stntuple Data Blocks
FillDataBlocks(ientry);

/I Access the number of muons recorded for this event.

int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event
std::cout << " nmuons = " << nmuons << std::endl;
return O;

13

After recompiling and running you should see something like:

7506 pts/3 00:00:00 root
7507 pts/3 00:00:01 root.exe

Processing MyAnalysis/drivers/myDriver.C(10,10)...
TStnRun2InputModule::BeginJob Warning - no metadata,
opening all chained files to count entries...

TStnRun2InputModule::BeginJob: chained 1 files, 11540 ev ents
MyModule::BeginJob

name = WHIvbb

mode =
HeaderBlock at 0xba44330
ElectronBlock at 0xc4198f8
MetBlock at 0xc41d530
MuonBlock at 0xc41b358
CalDataBlock at 0xba44480
JetBlock at Oxc4121a0
JetProbBlock at 0xc421368
DcasDataBlock at 0xc40fecO
ClusterBlock at Oxc4lace8
CesDataBlock at Oxba44el0
PhotonBlock at Oxc41a9f0
TrackBlock at 0xc411310
ZVertexBlock at 0xc411130
TrigSimBlock at Oxc40eca0
PROD@PhoenixSI_Tracking at 0xc411d20
Phoenix_Electrons at 0xc419fd0
PROD@Phoenix_Tracking at Oxc4117e0
GenpBlock at 0xc418268
SecVixTagBlock at 0xc41d688
MyModule::BeginRun
MyModule::Event

nmuons = 1

MyModule::Event

nmuons = 1
MyModule::Event

nmuons = 0
MyModule::Event
nmuons = 0

MyModule::Event
nmuons = 2
MyModule::Event
nmuons = 1
MyModule::Event
nmuons = 3
MyModule::Event

nmuons = 2
MyModule::Event
nmuons = 6
MyModule::Event
nmuons = 3
————— end job: ---- StnAna
L(TeV) : -1.000
L(live): -1.000
L(offl): -1.000
MyModule::EndJob
>>> TStnAna::EndJob: processed 10 events, passed 10 events
To fill all the data blocks in a compact form, replace the line in MyModule::FillDataBlocks with

TObjArray * nodes = GetAna()->GetEvent()->GetListOfNodes();
for (int i=0; i< nodes->GetEntries(); i++)
{
TStnNode * n = (TStnNode =*) nodes->At(i);
n->GetDataBlock()->GetEntry(ientry);
}

All we've actually accessed so far is the number of muons appearing in an event. Let’s go a step further and see the kind of
information we can learn about these muons. To see what stubs each muon has, we can loop over all the muons for each event.
We can create a pointer to the instance of TStnMuon for each muon and access a function that returns a boolean for whether
this muon has a particular stub. Add the following loop to MyModule::Event

int MyModule::Event(int ientry)
{

std::cout << "MyModule::Event" << std::endl;

/I Fill Stntuple Data Blocks
FillDataBlocks(ientry);

/I Access the number of muons recorded for this event.
int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event
std::cout << " nmuons = " << nmuons << std:endl;

14

for(int imu=0; imu<nmuons; imu++) //loop over the reconstr ucted muons
{
/lAccess reconstructed muons information
TStnMuon* muo = fMuonBlock->Muon(imu);//fMuonBlock is a TStnMuonBl ock.
TStnTrack * trk = fTrackBlock->Track(muo->TrackNumber());
const bool cmupstub (muo->HasCmuStub() && muo->HasCmpSt ub());
const bool cmxstub (muo->HasCmxStub());

const bool cmpstub = (muo->HasCmpStub() && !'trk->IsCMUFid 0);
const bool cmustub = (muo->HasCmuStub() && !trk->ISCMPFid 0);
const bool bmustub = (muo->HasBmusStub());
std::cout << " cmupstub = " << cmupstub << std::endl;
std::cout << " cmxstub = " << cmxstub << std::endl;
std::cout << " cmpstub = " << cmpstub << std:endl;
std::cout << " cmustub = " << cmustub << std:endl;
std::cout << " bmustub = " << bmustub << std::endl;
stdiicout << " mememememeeeees " << std:endl;
}
return 0;

}

Recompile, run, and check the log to see a listing of what stubs each muon has.

Make and Fill a Histogram

Histograms are centrally important for any kind of study. Now that we know how to access the information of an event
stored in the Stntuple, let’s generate a couple histograms of the output. It is important to create a particular histogram object
once, then continually fill it for each event. This means we must instantiate our histogram class of choice outside of the event
loop. One way to do this is declaring the histogram objects as static members.

Let’s begin by choosing to work with the TH1F histogram class. Since this is a ROOThistogram such an object is useless
unless we actually have a ROOTfile to save it in. Hence, we also need a TFile object. In the class declarations of the header
file MyModule.hh , write

class TFile;
class THI1F;

(this goes just above class MyModule: public TStnModule).
Since we have just accessed the muon block of this Stntuple, let’s make histograms of the 1 and the Pr distributions. In the
public: section of the class declaration for MyModule , write
/I Histograms
static TH1F =+ testEtaHistogram;
static THIF =* testPtHistogram;
static const Double_t etabins[41];
static const Double_t pthins[151];

Declare the TFile object under the protected: section:
TFile * _file;

That’s it for the header file, now move on to the source code. Recall that we assign value to static members outside of any
function, customarily just above the constructor:

/I Class constants

TH1F MyModule::testEtaHistogram = new TH1F("testMuonEta","E ta",40,&(*etabins));
TH1F MyModule::testPtHistogram = new TH1F("testMuonEta","Et a",150,&(*ptbins));
const Double_t MyModule::etabins[41] = {-2.0, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1,

-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,

0.0, 0.1, 0.2, 03, 04, 05 06, 07, 08, 009,

1.0, 11, 12, 13, 1.4, 15 16, 17, 1.8, 1.9, 2.0}

const Double_t MyModule::ptbins[151] = {0.0, 1.0, 2.0, 3.0 , 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,
20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,
30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,
40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,
50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,
60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,
70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,
80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,
90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,

100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108 .0,109.0,
110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118 .0,119.0,
120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128 .0,129.0,
130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138 .0,139.0,

140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148 .0,149.0,150.0};

15

Notice that the number of bins the histograms are told to have (the 3rd argument) are 40 and 150, while the vectors defining
what those bins are (the 4" argument) have 41 and 151 elements, respectively. Don’t think in terms of counting the number
of elements of the vector; think in terms of counting the number of “gaps” between the numbers of the vectors. These gaps are
the bins to be filled by the n and Pr values.

Declared objects contain junk until they’re assigned a value, so initialize the TFile object in the constructor with

_file = 0;
We want only one TFile object to be declared when we run some set of data through our module, so we instantiate it in
MyModule::BeginJob with

_file = new TFile("testrootfile.root", "RECREATE");

Next, let’s go down to MyModule::EndJob , which executes after all the data is finished running through out module, and
save the filled histograms to file.
int MyModule::EndJob()
{
std::cout << "MyModule::EndJob" << std::endl;
/I Write histograms to the output file
_file->cd();
testEtaHistogram->Write();
testPtHistogram->Write();
_file->Close();

return 0O;
}

This is a good place to pause to recompile and run, even though the histograms are not being filled with anything yet. Be
sure to do both. Sometimes syntax errors made with static members do not show up until run time. Also, check your directory
to see if the testrootfile.root file appeared after running.

Moving on to actually filling these histograms, we will require a lorentz vector to calculate for us the quantities we are
actually interested in, so add the following to the included files at the top of the source code:

#include "TLorentzVector.h"

Recall from the previous section where we learned how to fill and access the muon data block, that we wrote a for loop over
over the muons for each event. Within that loop, write:

/lAssign values for current reconstructed muon
const TLorentzVector * @ = muo->Momentum();
Double_t reconeta = g->PseudoRapidity(); //(jmn)
Double_t reconet = g->E();

Double_t reconphi = g->Phi();

Double_t reconpt = muo->TrackPt();

/I Fill histogram
testEtaHistogram->Fill(reconeta);
testPtHistogram->Fill(reconpt);

This will create a lorentz vector for the muon, then return that values we are interested in filling out histograms with. I included
a couple other values people commonly find useful as well.

We are now ready to recompile and run our module. After running 10000 events (remember to remove Cout print state-
ments!), I get the histograms in figures 1 and 2.

Create a Basic Ntuple

An ntuple is an object that stores information for each event passed through a module and can subsequently be access from
ROOTto make histograms. As opposed to making histograms directly within our module as in the previous section “Make and
Fill a Histogram,” an ntuple allows far greater flexibility. If we wanted to change some aspect of the in-module-histogram (such
as changing or adding a new cut), we would have to change the code, recompile, and rerun all the data. This can get extremely
time consuming if we’re running a large body of data. With an ntuple, however, we need only run the data once and then
afterward play around with various cuts at the ROOTcommand prompt until the desired selection is found. We will try some
explicit examples at the end of this section.

To accomplish this task, we will make another module containing our personal ntuple class. This class will be instantiated in
MyModule , where we will also declare a TTree object [4]. This TTree object, for our present purposes, will have just a single
branch (TBranch object [5]) into which our ntuple will be loaded. Finally, this ntuple-containing tree object will be saved to
the same TFile that our simple histograms were in the previous section. We will again open this file with ROOTto access our
ntuple information.

Starting from the top directory of our release, create and open the following two files:

Eta testMuonEta

Entries 22426

- Mean 0.003896

B RMS 0.7552

1000 j Underflow 75

~ Overflow 129

800 L Integral 2.222e+04
600
400
200|—

E ! ! ! Ll ! ! !
-2 1.5 -1 -0.5 0 0.5 1 1.5 2

FIG. 1: 7 Distribution of muons for 10000 W H — Ivbb events.

testMuonPt

Entries 19632

2200 :_ Mean 26.14

g RMS 21.25

2000 = Underflow o

1800 ; Overflow 198

1600 = Integral ~ 1.943e+04
1400
1200
1000
800
600
400
200

okt . L il T I
0 20 40 60 80 100 120 140

FIG. 2: Pr Distribution of muons for 10000 W H — lvbb events.

xemacs MyAnalysis/src/MyNtuple.cc &
xemacs MyAnalysis/MyAnalysis/MyNtuple.hh &

Our ntuple source code will be mostly empty for now. Put into the source code file:

#include <math.h>
#include "MyAnalysis/MyNtuple.hh"

Classimp(MyNtuple)

/I Constructor
MyNtuple::MyNtuple()

}

/I Destructor
MyNtuple::"MyNtuple()
{

}

Put into the header file:
#ifndef __ MyNtuple__
#define __ MyNtuple_
#include <iostream>

#include "TObject.h"
#include "TObjArray.h"

using namespace std;

class MyNtuple : public TObject

{
public:
/I Class Constructor.
MyNtuple();
/I Class destructor.
“"MyNtuple();

private:

/I Use this class in ROOT
ClassDef(MyNtuple,1);
3

#endif

17

Of course, none of this will compile if we forget to make the MyAnalysis/dict/MyNtuple _linkdef.h file containing:

#ifdef _ CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ nestedclasses;
#pragma link C++ nestedtypedefs;

#pragma link C++ class MyNtuple;

#endif
This is a good place to pause and make sure what we have so far compiles and runs.

gmake MyAnalysis.nobin USESHLIBS=1
root -l -q “MyAnalysis/drivers/myDriver(10,10)” >& log

Now we need MyNtuple to communicate with MyModule. In MyModule.hh | write #include

“MyAnalysis/MyNtuple.hh” where the other #include ’ed files are, and in the class declarations write:

class MyNtuple;

class TTree;

class TBranch;
In MyModule.cc , write #include “MyAnalysis/MyNtuple.hh” at the top as well. Back to MyModule.hh | include the
following lines under the protected: section of the class declaration:

TTree * _tree;

TBranch * _branch;
MyNtuple * _ntuple;

That’s it for the basic structure. Assuming that it still compiles and runs, let’s move on to putting some content in our new

ntuple. As a first example, lets start with some information about the muons. In MyNtuple.hh under the public: section,
write in the following value-assignment functions:
/I Fill Basic Info
void SetMuonEta (Double_t val) { _muonEta = val, }
void SetMuonEt (Double_t val) { _muonEt = val; }
void SetMuonPhi (Double_t val) { _muonPhi = val; }
void SetMuonPt (Double_t val) { _muonPt = val; }
In the same file under the public: member section again, declare the variables associated with the functions we just put in:
/I Basic info
Double_t _muonEta;
Double_t _muonEt;
Double_t _muonPhi;
Double_t _muonPt;

And in the private section, include:

18

TTree = _tree;
TBranch * _branch;
MyNtuple * _ntuple;
Now let’s migrate to MyModule.cc and start making use of this new ntuple class we’ve created. Like usual, we start by
initializing our declared objects in the constructor. Have your constructor now look like:

/IConstructor
MyModule::MyModule(): TStnModule("MyModule","MyModul e")
{

_file=0;

_tree=0;

_ntuple = new MyNtuple();

/I The first argument "tree" is the object called in ROOT to
/I make histograms.
_tree = new TTree("tree","WH Background Ntuple");

/I Option B at http://root.cern.ch/root/html/TTree.html
_branch = _tree->Branch("onebranch”,"MyNtuple",& ntup le, 32000,1);

}
In MyModule::EndJob | write the tree object to file

_tree-> Write();

in the same place we wrote the histograms to file, after _file->cd(); and before _file->Close();
After compiling and running again, observe how this has affected our output file so far. Open the root file in the top directory
of the release

root testrootfile.root
At the ROOTcommand prompt open a file browser:
TBrowser b

Double click on ROOT files ; double click on testrootfile.root . Now, in addition to the histograms from the previous
section, we see a folder for the TTree object we made, inwhich we find a single “branch” called onebranch , inwhich we find
“leaves” for each variable declared in our ntuple. Since we have not assigned values to these variables, these leaves are still
empty.

We are just about ready to move on to MyModule::Event to start filling our ntuple, but we must make one digression first.
It is important to have a Clear() function in our ntuple. Sometimes a particular value of our ntuple may not be updated for
some particular event, in which case the value from the previous event would be counted (or double-counted, actually). Hence,
we want to create a simple function that will reset all variables to some default value. This default value should be nonphysical;
it should be a value that simply will not occur as a legitimate experimental value. For instance, assign any counters the value
of —1. In MyNtuple.hh | declare the new function

void Clear();

under the public: section. In MyNtuple.cc , write in the following new function body:
void MyNtuple::Clear()

/I Be sure to reset the values to physically
/I unrealistic numbers.

_muonEta = -999.0;

_muonEt = -1;

_muonPhi = -999.0;

_muonPt = -1;

}

At last, let’s start filling our ntuple with information. We should still have a for loop over the muons of an event in
MyModule::Event from a previous section of this document. If not, edit it so that it now looks like:

int MyModule::Event(int ientry)
{

std::cout << "MyModule::Event" << std::endl;

/I Clear the ntuple
_ntuple->Clear();

/I Fill Stntuple Data Blocks
FillDataBlocks(ientry);

/I Access the number of muons recorded for this event.

int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event
stdi:cout << " nmuons = " << nmuons << std::endl;
for(int imu=0; imu<nmuons; imu++) //loop over the reconstr ucted muons

{

19

[onebranch._ muonPt | htemp
Entries 22426
22000 E Mean 325
RMS 493.8
20000 Underflow 0
18000 Overflow 0
16000 Integral ~ 2.243e+04
14000
12000
10000
8000
6000
4000
2000
o v v 4wy b e L L
0] 10000 20000 30000 40000 50000 60000 70000
FIG. 3: tree->Draw(" _muonPt”)
TStnMuon+* muon = fMuonBlock->Muon(imu);//fMuonBlock is a TStnMuonB lock.

/IAssign values for current reconstructed muon
const TLorentzVector * ¢ = muon->Momentum();
_ntuple->SetMuonEta(g->PseudoRapidity());
_ntuple->SetMuonEt (g->E());
_ntuple->SetMuonPhi(g->Phi());

_ntuple->SetMuonPt (g->Pt());

std:icout << " pt = " << g->Pt() << std:endl;

_tree->Fill();

return O;
}

First, note that we cleared the ntuple information at the beginning of the event. If, for intance, an event had no muons, then
the variables containing muon information would not acquire new values in the loop. This may lead to wrong information being
inadvertantly filled if we are not careful. Second, notice that the tree object calls its Fill ~ function inside the loop. In this
case, there may be several muons in a single event. If we filled the tree after the loop, we would only be filling the information
of the last muon in the list for a particular event.

Let’s compile, run, and look in the ROOTile again. When I run 10000 events and then double click on the leaf titled - muonPt,
I get the rather useless plot in figure 3. I can get the same plot at the ROOTcommand line by typing

tree->Draw(*_muonPt”)

This is where we illustrate the power of using an ntuple over making in-module histograms. We can see from the axes of figure
3 that there must be a few mismeasured muons at extremely high Pr. So let’s consider only muons with Pr < 200 GeV. Also,
it is often the case that we only want to consider muons above some minimum Pr threshold. So let’s also restrict ourselves to
muons with Pr > 10 GeV. The syntax at the ROOTcommand line is

tree->Draw(“_muonPt”,”_muonPt<200 && _muonPt>10")

This yields figure 4.
We can also make combinations of cuts between different kinds of values. Suppose we decide we want to look at the
pseudorapidity distribution of muons. We would type

tree->Draw(“_muonEta”)

and get figure 5. However, we then realize we don’t want the junk muons (very low and very high Pr muons), just as before.
So we include some additional cuts

tree->Draw(“_muonEta”,”_muonPt<200 && _muonPt>10")

and get figure 6. Again, throughout all this manipulation of cuts to get exactly the combinations we want, we never had to
rerun the data.

Create a Better Ntuple For A More Complex Analysis

The previous section provides a good introduction to what an ntuple is and does, but is only adequate for the most basic of
analyses. The ntuple in the previous section only saved numerical values; a more general use of ntuples allows for more complex
instances of classes to be saved as well.

20

muonPt { muonPt<200 && _muonPt>10} | htemp
Entries 19511
E Mean 26.72
3500— RMS 23.11
E Underflow 0
3000 - Overflow 0
E Integral 1.951e+04
2500—
2000
1500
1000
500
bl v 1 T L lonaflnanflonnllonnllos
0 20 40 60 80 100 120 140 160 180 200
FIG. 4: tree->Draw(" _muonPt”,” _muonPt<200 && _muonPt>10")
htemp
Entries 22426
800 Mean 0.009562
E RMS 0.7821
700— Underflow 0
- Overflow o
600; Integral 2.243e+04
500
400;
300;
200
100[—
obt . . innnflannallonnnllonns oo
-3 -2 -1 0 1 2 B
FIG. 5: tree->Draw(" _muonEta”)

For instance, any particular event has a single-valued header variables (TStnHeaderBlock) that can be stored to the ntuple,
whereas the same event may have several muons with several different values to be stored for each event. It is then a convenient
and common practice to create a new class for these muons that records all relevant information for a particular muon, then
make an array of instances of this muon class that is stored in the ntuple.

It was mentioned in the previous section that one of the reasons for having ntuples is to store event data in a smaller, more
managable form since we are hand-picking what information we want. There are a myriad of ways to utilize ntuples in an
analysis, but in this section we will expand upon the previous one in the following particular manner. Instead of saving single
variables to the ntuple we will save more complex C++ objects. The function of MyModule here will be just to pick and choose
what information we want to save to our ntuple from each event. We will subsequently create a new module MyAnalyzer
whose purpose will be to retrieve information from the ntuple and calculate desired quantities from the stored information.
Those desired quantities will then be stored into a simple new data structure in a new ROOTle that we can access in a manner
similar to the previous section.

The reasoning behind this strategy is that we should hopefully be able to run MyModule once over a large amount of data.
This may take many hours. Once our ntuple is filled, we can perform whatever calculations are desired in MyAnalyzer . Since
it is expected that we will need to continuously play with and alter these calculations, it is imperative that we not be required
to wait those long hours every time we wish to alter some calculation. Thus, it will be MyModule ’s job to fill the ntuple with
the “raw” data from the Stntuple, load it into a TTree , and save the tree to a ROOTfile. MyAnalyzer ’s purpose will be to
calculate desired quantities from the data stored in that ROOTfle.

For our first task, let’s create a new class that stores information from TStnHeaderBlock

_muonEta{ muonPt<200 && _muonPt>10}]

21

htemp

Entries

700

600

500

400

300

200

100

o

Mean
RMS
Underflow
Overflow

Integral

19511
0.01047
0.7938

[o]

(o]
1.951e+04

PR N TS T N S S T NS S e |

]
w

FIG. 6: tree->Draw("

-2 -1 0

” o

_muonEta”,

1 2 3

Storing an Object to an Ntuple

_muonPt<200 && _muonPt>10")

. These variables will only need

to be filled once per event so this will be mostly a pedagogical task concerning how to add more complex objects to our ntuple.

As always, the first and most easily forgotten step is to make our *linkdef.h

the folder stn _example/MyAnalysis/dict

#ifdef _ CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ nestedclasses;
#pragma link C++ nestedtypedefs;
#pragma link C++ class MyHeaderBlock;
#endif
Now create a source code file
(stn _example/MyAnalysis/MyAnalysis/MyHeaderBlock.hh).

Put in the source code file:

#include <math.h>

#include <iostream>

#include "Stntuple/obj/TStnHeaderBlock.hh"
#include "TLorentzVector.h"

using namespace std;

#include "MyAnalysis/MyHeaderBlock.hh"

Classimp(MyHeaderBlock)

MyHeaderBlock::MyHeaderBlock() : TObject()
{

_eventNumber = -1;
_runNumber = -1;
_sectionNumber = -1;
_instLum = -1.0;

}
MyHeaderBlock::"MyHeaderBlock(){}

void MyHeaderBlock::Clear()

{
_eventNumber = -1;
_runNumber = -1;
_sectionNumber = -1;
_instLum = -1.0;
}

void MyHeaderBlock::Print()
{

create a file called MyHeaderBlock _linkdef.h

(stn _example/MyAnalysis/src/MyHeaderBlock.cc)

file so that the new module will compile. In

. Write in this file:

and a header file

22

std::cout << " " << std::endl;
std::cout << M-mmm-e-ee- My Header Block ------------ " << s td::endl;
std::cout << " " << std::endl;
std::cout << "-- Event Number = " << _eventNumber << std::end l;
std::cout << "-- Run Number = " << _runNumber << std::endl;
std::cout << "-- Section Number = " << _sectionNumber << std: :endl;
std::cout << "-- InstLum =" << _instLum << std::endl;
std::cout << std::endl;

}

In the header file, put:

#ifndef _MYHEADERBLOCK_HH_

#define _MYHEADERBLOCK_HH_

#include "TObject.h"

#include "TLorentzVector.h"

#include "Stntuple/obj/TStnHeaderBlock.hh"

class TStnHeaderBlock;

class MyHeaderBlock : public TObject

{

public:
MyHeaderBlock();
“MyHeaderBlock();
/I Return event info
Int_t EventNumber () { return _eventNumber; }
Int_t RunNumber () { return _runNumber; }
Int_t SectionNumber () { return _sectionNumber; }
Float_t InstLum () { return _instLum; }
/I Filling muon info
void SetEventNumber (Int_t val) { _eventNumber = val; }
void SetRunNumber (Int_t val) { _runNumber = val; }
void SetSectionNumber (Int_t val) { _sectionNumber = val; }
void SetInstLum (Float_t val) { _instLum = val; }

/I Clear contents

void Clear();
void Print();

protected:
Int_t _eventNumber;
Int_t _runNumber;
Int_t _sectionNumber;
Float_t _instLum;

ClassDef(MyHeaderBlock,1);
2
#endif
Assuming MyHeaderBlock now compiles and runs properly, let’s move on to altering our ntuple (MyNtuple) so that it will
accept and store such objects. Remove any variable declarations and functions related to filling or returning those variables—
we’re rewriting this (if the Clear() function is still there, leave it, but empty). Don’t forget to remove the same variables from
the source code file as well. Lastly, go to MyModule::Event() and remove any lines that call the functions we just deleted.

We’re restarting construction of the ntuple module from scratch, so just leave the skeleton structure.
Now the source file for MyNtuple should be

#include <math.h>

#include "MyAnalysis/MyNtuple.hh"
#include "MyAnalysis/MyHeaderBlock.hh"
Classimp(MyNtuple)

/IConstructor
MyNtuple::MyNtuple()

_headerBlock = new MyHeaderBlock();

/IDestructor
MyNtuple::"MyNtuple(){}

void MyNtuple::Clear()

_headerBlock->Clear();

}
and the header file for MyNtuple should be

#ifndef ___MyNtuple__
#define ___MyNtuple__

#include <iostream>

#include "TObject.h"
#include "TObjArray.h"
#include "MyAnalysis/MyHeaderBlock.hh"

using namespace std;

class MyNtuple : public TObject

h

public:

/I Class Constructor.
MyNtuple();

/I Class destructor.
“"MyNtuple();

/I Return objects from a filled ntuple
MyHeaderBlock * NtHeaderBlock () { return _headerBlock; }

/I Add objects to our ntuple

void AddHeaderBlock (MyHeaderBlock * block) { _headerBlock

/I Object Declarations
/I (These members must be public for the analyzer module to ac
MyHeaderBlock * _headerBlock;

void Clear();

private:

/I Use this class in ROOT
ClassDef(MyNtuple,1);

#endif

23

Now we are ready to fill this in MyModule . Include our new header block in both MyModule.hh and MyModule.cc with
#include "MyAnalysis/MyHeaderBlock.hh"

Change MyModule::Event so that it looks like:
int MyModule::Event(int ientry)

{

}

/Istd::cout << "MyModule::Event" << std::endl;

/I Clear the ntuple
_ntuple->Clear();

/I Fill Stntuple Data Blocks
FillDataBlocks(ientry);

/I Fill our header block and add to the ntuple

MyHeaderBlock * header = new MyHeaderBlock();
header->SetEventNumber (GetHeaderBlock()->EventNumbe r());
header->SetRunNumber (GetHeaderBlock()->RunNumber()) ;

header->SetSectionNumber(GetHeaderBlock()->SectionN umber());

header->SetInstLum (GetHeaderBlock()->InstLum());
_ntuple->AddHeaderBlock(header);

/I Fill the values assigned to the tree (our ntuple) with
/I the values for this event.
_tree->Fill();

return O;

If we again enter the ROOTiile output, open a browser, and go into our tree we will find a leaf for our header object. However,
we will not be able to access the data members the header object contains anymore. This will be put off until the output of
the analyzer module we have yet to make.

Storing an Array of Objects in an Ntuple

Before putting our analyzer module together, let’s see how to store an array of objects to our ntuple. Whereas the header
information is unique for each event, there may be several muons per event that each have information to be recorded. As such,
we will construct a MyMuonclass in a manner completely analogous to MyHeaderBlock . Then, instead of saving instances of
MyMuon to the ntuple, we will make an array (TObjArray) of muon objects within MyModule and save that to the ntuple.
This way, we are still consistently filling the tree once per event.

Following what we did for MyHeaderBlock |, begin by making the stn _example/MyAnalysis/dict/MyMuon
file as before. Then make a header file (MyAnalysis/MyAnalysis/MyMuon.hh

#ifndef _MYMUON_HH_
#define _MYMUON_HH_
#include "TObject.h"
#include "TLorentzVector.h"
#include
#include

class TStnMuon;

class MyMuon :

"Stntuple/obj/TStnMuon.hh"
"Stntuple/obj/TStnTrack.hh"

public TObject

{
public:
MyMuon();
“"MyMuon();
/I Return event info
Double_t Eta () { return _eta; }
Double_t Et () { return _et; }
Double_t Phi (O { return _phi; }
Double_t Pt 0 { return _pt; }
/I Filling muon info
void SetEta (Double_t val) { _eta = val; }
void SetEt (Double_t val) { _et = val; }
void SetPhi (Double_t val) { _phi = val; }
void SetPt (Double_t val) { _pt = val; }
/I Clear Contents
void Clear();
protected:

/I Basic muon info

Double_t _eta;
Double_t _et;
Double_t _phi;
Double_t _pt;
ClassDef(MyMuon,1);
2
#endif

And make the source code (MyAnalysis/src/MyMuon.cc

#include "TLorentzVector.h"
using namespace std;

#include "MyAnalysis/MyMuon.hh"
Classimp(MyMuon)

MyMuon::MyMuon() : TObject()

{
_eta = -999.0;
_et = -999.0;
_phi = -999.0;
_pt = -999.0;
}

MyMuon::"MyMuon(){}

void MyMuon::Clear()

{
_eta = -999.0;
_et = -999.0;
_phi = -999.0;
_pt = -999.0;
}

Let’s go back to MyNtuple

and let it accept TObjArray
TObject , which is what allows us to load MyMuoninstances into a TObjArray

) containing:

objects.

First, check MyNtuple to see if TObjArray ’s are included:

#include "TObjArray.h"
Then write in an object declaration;

TObjArray *
then a function that adds a TObjArray

_muonArray;,

to the ntuple;

24

_linkdef.h

) containing:

It is important to note that MyMuon inherits from
object.

25

void AddMuonList (TObjArray * list) { _muonArray = list; }
and finally a function that will return the TObjArray
TObjArray * NtMuonList() { return _muonArray; }
Moving on to MyNtuple.cc , write the following declaration into the constructor:

_muonArray = new TObjArray();
_muonArray->SetOwner();

The purpose of SetOwner() is to “Set whether this collection is the owner (enable==true) of its content. If it is the owner of
its contents, these objects will be deleted whenever the collection itself is deleted.” [6] In the Clear() function, write in the
line

_muonArray->Clear();

We are finally ready to declare and fill MyMuonobjects in MyModule and then form them into an array that is saved to the
ntuple. Let’s begin with MyModule.hh . We first need to include the our new muon class:

#include “MyAnalysis/MyMuon.hh”

Write in the line
class MyMuon;

in the appropriate place, and declare the object array under the protected class members.
TObjArray * _muonArray;

In the source code MyModule.cc , again include our muon class:

#include “MyAnalysis/MyMuon.hh”

Instantiate the TObjArray that was declared in the header in the constructor:
_muonArray = new TODbjArray();

The last step in filling muon informtation to our ntuple is to put the following lines in MyModule::Event() just after (or
before, it doesn’t matter) the header values we put in just above:

/I Fill the array of MyMuon objects

int nmuons=fMuonBlock->NMuons();//returns fNMuons from TStnMuonBlock.hh
for(int imu=0; imu<nmuons; imu++) //loop over the reconstr ucted muons
{
/lAccess reconstructed muons information
TStnMuon* muon = fMuonBlock->Muon(imu);/fMuonBlock is a TStnMuonB lock.

TStnTrack * trk = fTrackBlock->Track(muon->TrackNumber());
const TLorentzVector * = muon->Momentum();
MyMuorx mymuon = new MyMuon();

mymuon->SetEta (g->PseudoRapidity());
mymuon->SetEt (a->EQ),;
mymuon->SetPhi (9->Phi());
mymuon->SetPt (9->Pt0);

_muonArray->Add(mymuon);

}
_ntuple->AddMuonList(_muonArray);

Building an Analyzer Module for an Ntuple

At last, we are ready to build an analyzer module. This new module will take the output of MyModule
(testrootfile.root) as it’s input, access the TTree object that contains our now-filled ntuple, perform desired calcu-
lations on these values, then save these new desired values to a new TTree which will be saved in a new ROOTfile. In this
particular example, our ntuple has a very limited amount of information saved in it so I will not actually calculate new values.
Instead, I’ll just show how to access some of the data in the ntuple and resave the same values to the aforementioned data
structure. This may seem to be a redundant step (and it is) since we’re just resaving the same numbers, but there are several
pedagogical reasons for doing so. First, this section is already far more expansive than the first section on creating ntuples
and it doesn’t need any further unnecessary complexity. Second, we have already covered saving information into a TTree ;
retrieving information from a TTree is no less trivial and the central point at present. Third, any particular calculations would
detract from the generality intended in this document. The kinds of calculations that could be found in this kind of analyzer
module would be the application of specific trigger requirements, calculating the invariant mass of jets, etc.

As always, every new module requires a *linkdef.h file. So create stn _example/dict/MyAnalyzer _linkdef.h con-
taining:

26

#ifdef __ CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ nestedclasses;
#pragma link C++ nestedtypedefs;

#pragma link C++ class MyAnalyzer;
#endif

Since this analyzer module will be run separately from MyModule, we will need a new driver script that loads
testrootfile.root . Create the file /stn _example/MyAnalysis/drivers/AnalyzerDriver.C and put in it:

#include <iostream>
TChain * treeChain;
MyAnalyzer * analyzer;

void AnalyzerDriver(int nevents = 10)

{

std::cout << "Begin analyzerDriver" << std::endl;

/I The argument must have the name of the TTree instance
/I save to the TFile.
treeChain = new TChain("tree");

/I Of course, "jnett" is my home directory, you'll have

/I to change that.

treeChain->Add(""jnett80/stn_example/testrootfile.r oot");
analyzer = new MyAnalyzer();

analyzer->Run(treeChain,nevents);

std::cout << "End analyzerDriver" << std::endl;

}

Now declare our analyzer class in a header file stn _example/MyAnalysis/MyAnalysis/MyAnalyzer.hh

#ifndef _MYANALYZER_HH_
#define _MYANALYZER_HH_

#include <sstream>
#include <string>

#include <iostream>
#include <iomanip>
#include <ostream>
#include <fstream>

#include "TObject.h"
#include "TLorentzVector.h"
#include "TMath.h"
#include "TTree.h"
#include "TChain.h"
#include "TH1D.h"
#include "TFile.h"

#include "MyAnalysis/MyNtuple.hh"
using namespace std;

class TFile;
class TTree;
class MyNtuple;

class MyAnalyzer : public TObject
{
public:

MyAnalyzer();

“MyAnalyzer();

/I Declare my output structure. The values

/I that will be put into this are the ones we want

/I 'in our final TTree object. For this module, instead
/I of saving an ntuple object to a TTree as we did
/I with MyModule, we will save this struct to a TTree.
struct MyEventinfo

{
b

/I This string will be used to declare the

/I variables of the above struct in a TBranch
/I of the output TTree object.

static const TString eventinfoDeclare;

27

void Run(TChain * treeChain, int nevents = 10);
protected:

/I These file, tree, and branch objects will be the
/I new output just like we have in MyModule

TFile * _processedFile;
TTree * _processedTree;
TBranch * _processedBranch;

/I Instantiate my output structure
MyEventinfo eventinfo;

/I Analysis functions
void EndAnalyzer();

ClassDef(MyAnalyzer,1)
b

#endif

For the source code of our analyzer module (stn _example/MyAnalysis/src/MyAnalyzer.cc), begin with

#include <iostream>

#include "MyAnalysis/MyAnalyzer.hh"
#include "MyAnalysis/MyHeaderBlock.hh"
#include "MyAnalysis/MyMuon.hh"
#include "MyAnalysis/MyNtuple.hh"
#include "TObject.h"

#include "TObjArray.h"

#include "TLeaf.h"

Classimp(MyAnalyzer)
using namespace std;

/I To be filled with the names of the variables

/I that will be in the output. The format follows that

/I given in “Case A” on http://root.cern.ch/root/html/T Tree.html.
const TString MyAnalyzer::eventinfoDeclare = ",

/I Constructor
MyAnalyzer::MyAnalyzer() : TObject()

/I Make a new TTree for the new results. The new ROOT file
/I containing the output is "testProcessedFile.root
_processedTree = O;

_processedFile = 0;

_processedTree = new TTree("ProcessedTree","My Processe d Ntuple");
_processedFile = new TFile("testProcessedFile.root","R ECREATE");
_processedBranch = _processedTree->Branch("eventinfo" ,&eventinfo, eventinfoDeclare);

}

/I Destructor
MyAnalyzer::"MyAnalyzer(){}

void MyAnalyzer::Run(TChain * treeChain, int maxEvents)

std::cout << " Begin MyAnalyzer::Run" << std::endl;
EndAnalyzer();
std::cout << " End MyAnalyzer::Run" << std::endl;

}

void MyAnalyzer::EndAnalyzer()
{
_processedFile->cd();
_processedTree->Write();
_processedFile->Close();

}
Run the analyzer module with
root -1 -q “MyAnalysis/drivers/AnalyzerDriver(10)”

Let’s put some content in MyAnalyzer . In the header file, change the declared (but still empty) data structure so that it
contains variables for the header info:

struct MyEventinfo

{
Int_t eventNumber;
Int_t runNumber;
Int_t sectionNumber;

Float_t instLum;

Along with this, we must change the
MyAnalyzer::eventinfoDeclare = “”; to

const TString MyAnalyzer::eventinfoDeclare =
"eventNumber/I:"
"runNumber/I:"
"sectionNumber/I:"
“instLum/F";

28

static string in the source code from const TString

Now the output TTree contains a branch that has these variables reported. So far, they are still empty. We now move to
MyAnalyzer::Run in the source code to see how to extract ntuple information from the output of MyModule .

In the following, we access the information in the filled-ntuple and then save it to the struct declared in the header of the
analyzer module. The purpose of individual lines are commented in the code. So alter MyAnalyzer::Run to look like the

following:

void MyAnalyzer::Run(TChain * treeChain, int maxEvents)

std::cout << " Begin MyAnalyzer::Run" << std::endl;

/I We don’t want to accidentally try accessing more events th an what
/I were saved to the ntuple in MyModule. Doing so would likely

/I result in the dreaded segmentation error.
int nevents = TMath::Min(int(treeChain->GetEntries()),

maxEvents);

/I Create a new ntuple object whose address will be set to the

/I filled ntuple in the input TTree.
MyNtuple * _ntuple = new MyNtuple();

/I Setting the address of _ntuple to the ntuple branch of the
/I input TTree. Note that this will NOT fill _ntuple with any

/I of those values yet.
treeChain->SetBranchAddress("branch”,&_ntuple);

/I Recall that in MyModule we executed the tree->Fill() comm and
/I at the end of each event. The following loop will cycle

/I back over each of these ffills'.
for(int ievent=0; ievent < nevents; ievent++)
{
/I This is the command that fills _ntuple
/I with the values of a particular event saved
/I to the input TTree.
int exists = treeChain->GetEntry(ievent);

/I Retrieve the header block that was saved to the ntuple in My Module
MyHeaderBlock * _header = _ntuple->NtHeaderBlock();

/I Retrieve the values of the header block for this event.

int _eventNumber = _header->EventNumber();
int _runNumber = _header->RunNumber();
int _sectionNumber ader->SectionNumber();

= _he
float _instLum = _header->InstLum();

/I Fill these retrieved values into the struct "eventinfo".

eventinfo.eventNumber = _eventNumber;
eventinfo.runNumber = _runNumber;
eventlnfo.sectionNumber = _sectionNumber;
eventinfo.instLum = _instLum;

/I Fill the output TTree
_processedTree->Fill();

}

EndAnalyzer();
std::cout << " End MyAnalyzer::Run" << std::endl;

}

This should be a sufficient start to constructing an Stntuple-based analysis.

29
COMMON ERRORS
Changing Code within St nt upl e/ | oop

If for any reason you need to change code within the header file of any module within Stntuple/Stntuple/loop you
must, of course, compile with

gmake Stntuple._loop USESHLIBS=1

However, because of how intertwined these modules are with those in Stntuple/Stntuple/ana it is possible that you will
need to compile that section of Stntuple as well, even if you haven’t touched it’s modules:

gmake Stntuple._ana USESHLIBS=1

For instance, I discovered this when changing the number of variables in a function of TStnAna . After compiling TStnAna
and my own module I received the following error when running the module:

dlopen error: /mnt/autofs/misc/nuwmO01.home/jnett80/st n_rel/shlib/Linux2_SL-GCC_3_4/
libStntuple_loop.so:
undefined symbol: _ZN10TStnModule5EventEiiRiSO_S0_S0_ S0_S0_S0_S0_S0_S0_

RATH2FRATHIFS4_S4_S4 S4 S4_S4_S4 S4 S4_S4_S4_S4 S4_
S4_S4 S4_S4_S4 S4 S4_S4_S4_S4 S4_S4_S4_
Load Error: Failed to load Dynamic link library

Imnt/autofs/misc/nuwmO01.home/jnett80/stn_rel/shlib/ Linux2_SL-GCC_3_4/libStntuple_loop.so
+* |nterpreter error recovered ok
root [0]

Processing TriggerAna/scripts/higgs.C(10,10)...

Error: Symbol TStnAna is not defined in current scope
FILE:TriggerAna/scripts/higgs.C LINE:3

Error: Symbol x is not defined in current scope
FILE:TriggerAna/scripts/higgs.C LINE:3

dlopen error: means that a shared library cannot be loaded into ROOT In this case, libStntuple _loop.so cannot
be loaded. This kind of error is then always (as far as I've seen) followed by the statement Load Error: Failed to

load Dynamic link library . Notice that the one clue to the source of the problem is contained withing the “undefined
symbol” _ZN10TStnModule5EventEiiRiSO0... . I resolved this by first deleting all the libraries with gmake clean and
then recompile everything, including now gmake Stntuple. _ana USESHLIBS=1. Further changes of this sort can avoid the
gmake clean bomb by compiling libStntuple _ana.so before attempting to run the module.

I've actually encountered this failure-to-load a shared library error for several reasons (another time was when I mixed up
the syntax for the destructor in my TStnModule module). It is particularly bedeviling because it is not a compilation error;
it occurs when rootlogon.C is attempting to load the necessary shared libraries for the ROOT driver script. The only clue
you get is that there is a problem somewhere within the directory of the indicated shared library.

The missing separator error

An often encountered error contains the mystifying statement missing separator. Stop. . A frequent solution to
this is to gmake MyModule.clean to completely clear the libraries, and then recompile normally gmake MyModule.nobin
USESHLIBS=1

[1] http://www.opengroup.org/onlinepubs/009695399 /functions/unsetenv.html
[2] Thanks to Matteo Bauce for advice on the second case.

[3] http://www.cplusplus.com/doc/tutorial /classes2.html

[4] http://root.cern.ch/root/html/TTree.html

[5] http://root.cern.ch/root/html/TBranch.html

[6] http://root.cern.ch/root/html/TCollection.html#TCollection:SetOwner

