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LUX Goals

* Discover WIMPs

— Necessary requirement: establish inconsistency of
LUX results with no-WIMP scenario

e Set Limits (quantify inconsistency of data with
the existance of WIMPs)



Profile Likelihood Ratio

 The PLR is the statistical machinery that
accomplishes the above goals

 The PLR is nothing more than a prescription
for how to choose parameters for, and execute
a series of frequentist hypothesis tests.



Hypothesis test

 Statistical procedure for establishing the
consistency or inconsistency of a set of data with
a stated hypothesis.

* The procedure is as follows:
— Precisely state the null hypothesis
— Choose a test statistic

— Determine the PDF for the null hypothesis as a
function of the test statistic

— Establish an acceptance/rejection region4

— Compare the test statistic of the measurement to the
PDF to determine whether it lies in the acceptance
region, or rejection region.



Example: verifying a person’s sex by

height

* Null Hypothesis: person X is a male.

e Test statistic: height in inches
 PDF

percent of males

7.5 1

575 60.0 625 650 675 700 725 750 775

height [inches] (test statistic)

Data shown is for males between 20 and
29 years old from a US census survey

conducted in 2007

https://www?2.census.gov/library/publications/2010/comp
endia/statab/130ed/tables/11s0205.pdf



Example: verifying a person’s sex by
height (continued)

* Acceptance/rejection region

* Measure the height of person &=
X g
and compare 5 r
— (say we measured 72") e S o W T 75? 7
height [inches] (test statistic)
L, 1501 72" lies within our
2 12.5 .
= acceptance region,
S sl ‘L_ therefore person x is
S 201 consistent with being
= I 5 male under our statistical
57I.5 60I.D 62I.5 65I.D 67I.5 70I.0 72I.5 75.0 77I.5 test.

height [inches] (test statistic)



Hypothesis Tests Improved

Sometimes we have a specific alternative to our null
hypothesis we wish to test against. Our test can be improved
by stating an alternative hypothesis in addition to our null
hypothesis.

There are now two possible errors in our test:
— Type 1: the null hypothesis is true and we reject it
— Type 2: the alternative hypothesis is true and we reject it

The Significance of a test (typically denoted a) is the fraction
of the time the null hypothesis would be rejected, even if it
were true.

The Power of a testis 1 — B, where B is the fraction of the time
that the null hypothesis is accepted, even if the alternative
hypothesis is true.

The best tests will make both a and B as small as possible.



Example: Sex by height revisited

Null Hypothesis (HO): person X is a male.
Alternative Hypothesis (H1): person X is a female.
Test statistic: height in inches

PDF

Same deal as before with the data

0.0 A




Example: Sex by

height revisited

(continued)

* Acceptance/Rejection Region

— Probability of Type 1 error (given
HO true): a

— Probability of Type 2 error (given
H1 true): B

Compare: Say we measure 69”

17.5 A

15.0

12.5

10.0 ~

7.5 1

5.0

2.5 1

0.0 1

575 60.0 625 650 675 70.0 725 750 775

17.5 A

I
o

=

5.0 4

I
[T

12.5 A

10.0 A
7.5 1
5.0 1

2.5 4 ‘

0.0 1
57.5 60.0 625 650 675 700 725 750 775

Conclusion: Person X is consistent with
being male with significance a.

Caution: this does not mean person X
has a 1-a probability of being male.



Hypothesis Tests: Improved More

 (Often we can measure more than one observable and would like to use
both. In this case, we can choose our test statistic to be a function of
multiple observables.

* An excellent way (though not the only way) to accomplish this is to use the
likelihood of your model given your data as your test statistic.

— Note: until this point, our PDF has served only inform our choice of acceptance region
(and allow us to report our significance a). Now we are using it in our calculations; how
else are we going to compare quantities of different units?



Example: Sex by Height and Weight

* Null Hypothesis (HO): person X is a male.

* Test Statistic: L(male; (h,w)) = Preigne (%) * Pyeignt (W)

— here | assume height and weight are uncorrelated, clearly a bad assumption, but | didn’t

want to deal with it (and didn’t have data in hand). Should have a 2D PDF instead of a

product of 2 1-D PDFs

 PDF

Traction or males

0.025 -

=] o
= =
o N
=] w

o [=]
o o
a =
=] wu

T T N T T T T T T
57.5 60.0 625 650 675 70.0 725 750 775

height [inches]

ok

60.0 625 65.0 67.5 70.0 725 750 775

height [inches]

0.0200
0.0175
0.0150 2
©
00125 £
[T
0.0100 ©
c
0.0075 .©
0.0050 (g
p -
&
0.0025

0.0000

+

fraction of males

fraction of males

._.
2

T ™ T T T T T
100 150 200 250 300 350 400

weight [pounds]

T
450

]

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175

likelihood (test statistic)

11



Example: Sex by Height and Weight
(continued)

* Acceptance/Rejection region 0 ‘
@D 10-1 4
— accept region of higher likelihood e
e Compare: say we measure 75” c
RS
and 250 lbs S
— Calculate the likelihood of the male = | —
mOdel based on thls data' 0'00147 D.OIDOO 0.0625 O.OIDSO D.OIDTS D.OI].OO 0.0|125 O.OI].SO 0.0ll75
likelihood (test statistic)
N Conclusion: person X is inconsistent
9 10 with being male with significance a
=
kS
c
2 Bl Acceptance
E Bl Rejection
H Data B

1 1
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175

likelihood (test statistic)




Hypothesis Tests: The Final Improvement
(Neyman Pearson Lemma)

 When using an alternative hypothesis, we want to minimize both a and .

* Neyman Pearson Lemma:

For a hypothesis test between two simple hypothesis (hypothesis whose PDFs can be
precisely and completely specified), given a choice for either a or B, the choice of test
statistic which minimizes the other is the ratio of the null hypothesis’ likelihood to the
alternative hypothesis’ likelihood. And the choice of acceptance region is including regions
of decreasing likelihood ratio until the remaining fractional area is a.

L(HO; . . L. .
A= ZH99 oo metimes the test statistic q =—2InA isused
L(H1;x)




Example: Sex by Height and Weight
Revisited

Null Hypothesis (HO): person X is a male.
Alternative Hypothesis (H1): person X is a female.

. L L(HO;(h,w
Test Statistic: A = (HO;(h,w))
L(H1;(h,w))
PDF:
- HO I HO
IS - . Hl
Fis)
c o I
o
e o
v Q
a o
Height [inches] T Weight loounds]
o . HO
I Hl

Overflow

[

o
1
o

fraction of males
g g

=
o
IS

14

i 0.0 2.5 5.0 75 10.0 125 15.0 17.5
likelihood ratio (test statistic)



Example: Sex by Height and Weight
Revisited (continued)

Acceptance/Rejection region: binning too large to represent accurately,
but essentially rejection region is a fraction of the left bin if we choose a =
0.05

Compare: say that again we measure 75” and 250 lbs

Lo 4 Conclusion:
HO Person X is

wn . .
Q H1 consistent with
e being male
©
c ' Data
o :
B comparison
o E——
-
Y

10—4 E
0.0 2.5 5.0 7.5 10.0 125 150 175

likelihood ratio (test statistic)
15



Hypothesis Tests: Extension to Non-
simple Hypothesis

What if we cannot specify our PDFs precisely? (as is actually most often
the case in reality)

the most likely model for the null and alternative hypotheses given the
data in the likelihood ratio instead of a-priori determined PDFs.

— Parameterize the PDFs in terms of nuisance parameters.

— Choose the values of these parameters (independently for the null and alternative
hypotheses) such that the likelihood for the null hypothesis in the numerator is
maximized, and again so that the likelihood for the alternative hypothesis in the
denominator is maximized.

— If one has an idea of what these nuisance parameters might be, a term can be added to
the likelihood function, profiling the parameter, typically decreasing the likelihood the
further the parameter is from its expected value.



Example: Counting Experiment

Suppose one wants to determine whether the activation of a beam causes
a signal in a detector.

The detector takes measurements for an amount of time T without the
beam turned on and measures m events

The detector then takes measurements for an amount of time T with the
beam turned on and measures n events.

Null hypothesis: the beam creates no signal
Alternative hypothesis: the beam adds, on average, p events per time T

Test statistic: likelihood ratio
— Likelihood function no profiling:

Pois(n; b + s * p) * Pois(m; b) where s = 0 for the null hypothesis and s = 1 for the
alternative hypothesis

— Likelihood function with profiling:
Pois(n; b + s * p) * Pois(m; b)*Gaus(b; b, bgy)

Nuisance parameters: b



PLR: Generating the PDF

We already stated that in our use case, we cannot determine the PDFs for
the null or alternative hypotheses completely, so how do we proceed?

Toy Monte Carlos: Generate data sets from our models using values of
nuisance parameters drawn from our profiling.

The collection of test statistics calculated from these toy mcs forms our
PDF.



Example: Counting Experiment
(Continued)

mcBkgHist

mecBkgHist
Entries 1000000
C l- Mean 371
E L n I Std Dev
10? E l
10—
0

7 8 9 10

1 2 3 4 5 6

g (test statistic, -2In(A))

Red: signal + background
Blue: background only
Black: data

n =15, m=20 (but bkg

only run went for 2T)
p=5s=1.1

19



Using the PLR to Discover a WIMP

Null hypothesis (H,): There are no WIMPs (parameter of interest = 0).
Alternative hypothesis (H,): There are WIMPs (parameter of interest # 0).

Lu=00) _
Lur00) 17 2In2

— Numerator: fix POl (represented by ), let all other nuisance parameters (represented by

B) float and maximize.

— Denominator: POI float in addition to all nuisance parameters

The single vs double hat only serves to represent that the values settled on for the nuisance parameters need
not be the same in the two likelihood expressions.

Our significance for discovery is chosen to be 50, or a = 3x10”7.

Test Statistic: A =



Setting a Limit

* The limit we set is the bound of a 90% frequentist confidence interval.

This is a procedure for setting boundaries that will result in a band covering the true
parameter 90% of the time.

Note, this does NOT mean that there is a 90% chance that our parameter of interest lies
within the band.

* From the original confidence band paper (by Neyman)

“Can we say that in this particular case the probability of the true value [falling between these limits] is equal to a?
The answer is obviously in the negative. The parameter is an unknown constant, and no probability statement
concerning its value may be made...”

Further expounding found on wikipedia...

“[this idea] seems rooted in a (not uncommon) desire for Neyman-Pearson confidence intervals to provide
something which they cannot legitimately provide; namely, a measure of the degree of probability, belief, or
support that an unknown parameter value lies in a specific interval.”



Calculating the Confidence Interval
(Limit)

The confidence interval for each mass is calculated independently.

We do what is referred to as hypothesis test inversion:
— Null hypothesis (H,): WIMPs exist with the specific POl i =
— Alternative hypothesis (H;): WIMPS exist (or don’t) with some other POl 1 # W,

At each mass we run a series of hypothesis tests with different fixed values
Of Keegt.

L(I”'=utest; 5)
L(.u'iu'test;e) ’

q = —21In A) except that instead of simply comparing our data’s test statistic to an
acceptance region to determine whether to accept or reject it, we calculate its p-value

(the probability that the null hypothesis yields something more outlandish).

— We carry out the same test procedure as before (Test Statistic: A =

When we determine the value of y,., that yields a p-value of 0.1, we
record that value of p,. and call it our limit. (this makes no sense to me)

— Recall that a p-value of 0.1 means that 90% of the time with this hypothesis we would
have gotten a result that better matches the null hypothesis (WIMPs with ).
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The LUX PLR: Misc Notes

* The run4 analysis is done in 16 different bins | have called “subDetectors.”

— 4 “Time Bins” and 4 “Z-Slices.”

* The run4 analysis is done in “S2 space.” That is, our spatial dimensions are
S2r, S2phi, and drift (drift time). S2r and S2phi refer to the position where
the detector measures that the electrons freed by an event emerge from
the liquid.

 The PDF referred to in all of the introductory material is the PDF of the
test statistic (q), there are many other PDFs that are about to be referred
to, try not to get them confused as there are many layers of PDFs ©.



The LUX PLR: Likelihood

Number of events Shape information

No s, —
« L(w; 0) = HdEsubDetectors[POIS(nobs d> Nexp, d)b ’ dPDFd(xi;.u}]

){p ‘ ‘ Gaus(Mexp,p; Mexp,ps Texp, p%

eEnuisance

Profiling constraints

N —
— PDFqy(x; ) = Nexp,d sigfd sig\(X (_)) + Zpebackground Ta,pNexp, Pfd p (xl)

Nexp,a = Ta,sigth + Zpebackground Ta.pNexp,p Where 1g ,is the expected fraction
of backgrounds (or signal) of type p in subDetector d, and t is a constant relating pu
to the number of signal events.

— fs are PDFs of the data-space (see below) specific to each subDetector and
background type

— Measured: n,, x; = (51,52, r,drift, ¢, subDetector)
— Nuisance: ngyy

* Essentially: linear combination of signal PDF and background PDFs. Vary

the overall scale factors. Penalize for varying away from our expected

values. 27



The LUX PLR: Implementation

Create a 5D PDF of the shape information

— Weighted Sum of signal PDF and background PDFs

e Current backgrounds: Boron 8 neutrinos, accidentals, Ar37, RnKr,
comptonBottom, comptonRest, Kr83m, wall, (plan to add at least (alpha,
n), and gamma-x).
Create a PDF for the profile of each nuisance parameter
— Just a Gaussian for the total expected number of each of the backgrounds mentioned
above currently. Tested the effect of using G2 and a lindhart factor modifier as nuisance
parameters but their effect was found to be negligible (at least at low energies).
Take the direct product of the above 5D PDF and each of constraint
Gaussians.
— Theresultisa5+n ;... dimensional PDF whose probability when evaluated on the
data set is exactly the product of the red and green sections from the previous slide.
Feed the resulting PDF and the data into HypoTestinverterDemo (root PLR
function) along with options governing other parameters (hnumber of toy
mcs to run per (mass, POI), what POls to use, etc)

The code for this is in the EFTRun4.cxx file in the EFT limits branch of the
LUX PLR code.



The LUX PLR: Signal Model

29



The Signal PDF

Direct product of two independent PDFs for each subDetector
— A 3D PDF uniformin (r, ¢, z) transformed into (S1r, S2¢, drift)

— A 2D PDFin (S1, S2) determined uniquely for each WIMP mass-operator-nucleon-
subDetector combination

Individual (S1, S2) PDFs saved root histograms 4 Z-Slices (drift bins) to a
file, but 1 file per Wimp mass, operator, nucleon, time bin combination

Implementation in EFTRun4/RooSignalPDF.cxx (.h)



Recoil Energy Spectrum

* Generated by “DMFormFactor” mathematica
package

* Generate an analytic energy recoil spectrum for
each isotope of Xenon (isotopes = {128, 129, 130,
131, 132, 134, 136}) as well as each of the
following masses:

— masses =
{7,10,12,14,17,21,33,50,100,400,1000,4000}

* Weight the analytic spectra by their isotopic
abundance and sum them together for each
mass. This leaves one spectrum for each mass



Recoil Energy Spectrum

 These analytic spectra are insanely complicated

and difficult (as well as unnecessary) to port to
the limits code, so we bin it.

— Spectrum is integrated (numerically) out to 350 keV

(beyond our max energy range for this analysis) to
obtain an energy cutoff.

— Spectrum is then integrated in 1 keV bins from 0 until
the total integrated reaches 99% of the total from O to
350 keV. This number is recoreded and the
integration then proceeds to a factor of 1.2 higher in

recoil energy. (This is because the standard deviation
in the s1 and s2 distributions for a single energy is
typically about 6 or 7%)

— These bins and the values of the integrals are then
stored and written to file.



Recoil Energy Spectrum

 Example text output (one for each
coupling)

mj als - Motepad . . .
Mass  \Maximum energy to use in analysis

File Edit Format View Help
WIMPMass 7 maxfhergy 3
81234
2.77994e3 5.§3489e2 8.50473el 8.25877e
WIMPMass 18/maxEnergy 5

L18570e3 _A799872e2 1.95134e2 7.86158el 2.38975el
Bin Edges

2.34595e3 1.35115e3 7.39497e2 3.88471e2 1.96587e2 9.57703el 4.46764el 1.97263e]l 8.06778p Counts per b|n
WIMPMass 14 maxEnergy 9

B1234567891811

2.12188e3 1.39444e3 8.8738e2 5.501e2 3.33383e2 1.97657e2 1.14734e2 6£.51823el 3.60884el 1.93el 9.94775e

WIMPMass 17 maxEnergy 12

812345678916 11 12 13 14 15

1.83475e3 1.35257e3 9.79428e2 6.98549e2 4.91687e2 3.41988e2 2.35219=2 1.60041e2 1.87722e2 7.17855el 4.71713el 3.86326el 1.9684e!
WIMPMass 21 maxEnergy 16

@1234567 8918 11 12 13 14 15 16 17 18 19 28

1.54885e3 1.23252e3 9.77134e2 7.68236e2 5.99583e2 4.64671e2 3.57932e2 2.74188e2 2.88744e2 1.58186e2 1.19115e2 §.9262%1 6.65329
WIMPMass 33 maxEnergy 29

8123245678918 11 12 13 14 15 16 17 18 19 28 21 22 23 24 25 26 27 28 29 38 31 32 33 34 35

1 1.82285e3 8.98489e2 7.87238e2 6.8818%e2 6.88899e2 5.22237e2 4.53518e2 3.93882e2 3.4886e2 2.9366e2 2.53149e2 2.17859e2 1.87184e2




Nuclear Recoil Templates

Locations are generated randomly (uniformly) in real
space.

Locations are mapped to S2 space using JPM (electric
field at the point simultaneously obtained).

Fiducial cut applied, event is re-generated if the
location does not pass.

NEST is used to generate an s1lc and s2c for the event.
Events are sorted into z-slices based on drift time

Events generated until each z-slice has at least 10,000
events

This is done for each energy 0.5 keV to 350 keV in 1
keV increments for each time bin
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Files |
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----- i MF_5152_energyd003.5_TE1 _Z5:
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Nuclear Recoil Templates
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Nuclear Recoil Models

* Take the Templates and weight each energy and each time bin and z-slice

and weight them by the appropriate number from the Recoil Energy
Spectrum and add them together.

e Cutthe S1 and S2 off at the mean values associated with the “maxEnergy”
number, but add ones from higher energy to account for bleed-in.

* Re-binned into an appropriate number of bins for the PLR code to run with

Operator 8, isoscalar, 50 GeV, TB1 ZS1

i |_S1S2_TB1_ZS1.root
Entries 135304
Mean x 24.65
Mean y 3077
Std Dev x 17.28
Std Devy 1336
0.08
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@ 0-04
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The LUX PLR: Generic Background
Model

Most Backgrounds have a weak correlation between their spatial and energy
(S1, S2) distributions.

Like the signal model, the generic background model is a direct product of two
independent PDFs for each subDetector
— A3D PDFin (S1r, S2¢, drift) determined uniquely for each background type (and subDetector)
— A 2D PDFin (S1, S2) determined uniquely for each background type and subDetector

The nuisance parameter dictating the number of expected events of each

background type scales each model (in addition to the fraction of these
expected in each subDetector which is fixed, and is not a nuisance parameter).

Saved in the same manner as the signal PDFs except that there is also a file
with the 3D spatial PDFs and each 2D PDF is normalized such that the full
integral is the total number of expected events for that subDetector.

This is implemented in EFTRun4/RooBkgPdf.cxx (.h) (notice here the df in Pdf
is lower-case, opposite of the Signal model. Silly, | know, but | had two
versions in development at once and this one worked and my brain works in
funny ways and | never overwrote the original one)



The LUX PLR: Generic Background
Model

e Others are in charge of delivering these:
.

— Most: Wei or someone using &+
— Kr83m: Alice
— (a, n): Me ®

— y-x: Peter Rossiter (not modeled yet, don’t know if
we can make the uncorrelated model)




The LUX PLR: Wall Model

Events (usually Rn daughters) on the walls have much of their S2 absorbed
by the wall and so can’t be included in the other background models.

Unfortunately both S2r and drift correlate with S2 so our generic
background model won’t work for this model.

Instead, we currently have two proposed formats for the model

— 3D PDF(S1, S2, drift) direct product 1D PDF(S2¢) multiplied by the a function of S2r
f(S2r; S1, S2, drift, S2¢) which is itself a functional of the other parameters as indicated

— 4D PDF(S1, S2, S2¢, drift) multiplied by f(S2r; S1, S2, drift, S2¢) as described above
* The 4D PDF is slightly harder to implement and harder on computation time

In charge of model: Claudio

Not implemented yet (format not quite decided, waiting on
whether correlation between S2¢ and other variables is low
enough to use option 1)



The LUX PLR: Bells and Whistles
(New to EFT)

The PLR can run a hypothesis test for a single specified value of the POI.
Signal models easy to create (as long as features larger scale than 1 keV).
Automatic S1 and S2 cutoff based on input signal recoil energy spectrum.

Most PDFs have a set number of bins (configurable in Parameters.h), but
S1 and S2 binning is determined dynamically based on the recoil
spectrum.

Automatically toggles between using Kr83m exclusion periods (smaller
exposure time) and a Kr83m background model and using the longer
exposure time and excluding the Kr83m background based on if the recoil
spectrum approaches Kr83m energies.



Code

e Available at

https://github.com/luxdarkmatter/LUXLimits/blob/E

FT/EFTRun4/ if you want to poke around and look at
it.
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Thanks!

 With remaining time | could:

1.
2.

Answer questions

Walk through the code showing what is done
where.

Look at an example of a PLR for a simple
counting experiment that | coded from scratch
to get a better idea of what a PLR actually is.

Cry because of all of your cruel criticism.
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Limit Setting for

0.25

0.2

0.15

0.1

0.05

One Mass lllustration

Different run than before

—4$— Observed CLs+b

—4— Observed CLb

Expected CLs+b - Median

- Expected CLs+b + 14
|:| Expected CLs+b+2 ¢

1 2 3"

Intersects at ~3.2 signal events so
our limit is the value of POI that
yields an expected 3.2 signal events
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