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LUX Goals 

• Discover WIMPs 

– Necessary requirement: establish inconsistency of 
LUX results with no-WIMP scenario 

• Set Limits (quantify inconsistency of data with 
the existance of WIMPs) 
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Profile Likelihood Ratio 

• The PLR is the statistical machinery that 
accomplishes the above goals 

• The PLR is nothing more than a prescription 
for how to choose parameters for, and execute 
a series of frequentist hypothesis tests. 
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Hypothesis test 

• Statistical procedure for establishing the 
consistency or inconsistency of a set of data with 
a stated hypothesis. 

• The procedure is as follows: 
– Precisely state the null hypothesis 

– Choose a test statistic 

– Determine the PDF for the null hypothesis as a 
function of the test statistic 

– Establish an acceptance/rejection region4 

– Compare the test statistic of the measurement to the 
PDF to determine whether it lies in the acceptance 
region, or rejection region. 4 



Example: verifying a person’s sex by 
height 

• Null Hypothesis: person X is a male. 

• Test statistic: height in inches 

• PDF 

 

 
Data shown is for males between 20 and 
29 years old from a US census survey 
conducted in 2007 
https://www2.census.gov/library/publications/2010/comp
endia/statab/130ed/tables/11s0205.pdf 
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Example: verifying a person’s sex by 
height (continued) 

• Acceptance/rejection region 
• Measure the height of person 

x 
and compare 

– (say we measured 72”) 
 
 72” lies within our 

acceptance region, 
therefore person x is 
consistent with being 
male under our statistical 
test. 
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Hypothesis Tests Improved 

• Sometimes we have a specific alternative to our null 
hypothesis we wish to test against. Our test can be improved 
by stating an alternative hypothesis in addition to our null 
hypothesis. 

• There are now two possible errors in our test: 
– Type 1: the null hypothesis is true and we reject it 

– Type 2: the alternative hypothesis is true and we reject it 

• The Significance of a test (typically denoted α) is the fraction 
of the time the null hypothesis would be rejected, even if it 
were true. 

• The Power of a test is 1 – β, where β is the fraction of the time 
that the null hypothesis is accepted, even if the alternative 
hypothesis is true. 

• The best tests will make both α and β as small as possible. 
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Example: Sex by height revisited 

• Null Hypothesis (H0): person X is a male. 

• Alternative Hypothesis (H1): person X is a female. 

• Test statistic: height in inches 

• PDF 

 

 

 

 

Same deal as before with the data 
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Example: Sex by height revisited 
(continued) 

• Acceptance/Rejection Region 
– Probability of Type 1 error (given 

H0 true): α 

– Probability of Type 2 error (given 
H1 true): β 

• Compare: Say we measure 69” α β 

Conclusion: Person X is consistent with 
being male with significance α. 
 
Caution: this does not mean person X 
has a 1-α probability of being male. 
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Hypothesis Tests: Improved More 

• Often we can measure more than one observable and would like to use 
both.  In this case, we can choose our test statistic to be a function of 
multiple observables. 

• An excellent way (though not the only way) to accomplish this is to use the 
likelihood of your model given your data as your test statistic. 
– Note: until this point, our PDF has served only inform our choice of acceptance region 

(and allow us to report our significance α).  Now we are using it in our calculations; how 
else are we going to compare quantities of different units? 
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Example: Sex by Height and Weight 

• Null Hypothesis (H0): person X is a male. 

• Test Statistic: ℒ 𝑚𝑎𝑙𝑒; (ℎ, 𝑤) = 𝑃ℎ𝑒𝑖𝑔ℎ𝑡 𝑥 ∗ 𝑃𝑤𝑒𝑖𝑔ℎ𝑡(𝑤)  

– here I assume height and weight are uncorrelated, clearly a bad assumption, but I didn’t 
want to deal with it (and didn’t have data in hand).  Should have a 2D PDF instead of a 
product of 2 1-D PDFs 

•  PDF 

 + 

= 
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Example: Sex by Height and Weight 
(continued) 

Conclusion: person X is inconsistent 
with being male with significance α 

• Acceptance/Rejection region  
– accept region of higher likelihood 

• Compare: say we measure 75” 
and 250 lbs 
– Calculate the likelihood of the male 

model based on this data: 0.00147 
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Hypothesis Tests: The Final Improvement 
(Neyman Pearson Lemma) 

• When using an alternative hypothesis, we want to minimize both α and β. 

• Neyman Pearson Lemma:  
For a hypothesis test between two simple hypothesis (hypothesis whose PDFs can be 
precisely and completely specified), given a choice for either α or β, the choice of test 
statistic which minimizes the other is the ratio of the null hypothesis’ likelihood to the 
alternative hypothesis’ likelihood.  And the choice of acceptance region is including regions 
of decreasing likelihood ratio until the remaining fractional area is α. 

𝜆 =  
ℒ(𝐻0;𝑥)

ℒ(𝐻1;𝑥)
 sometimes the test statistic 𝑞 = −2 ln 𝜆  is used 
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Example: Sex by Height and Weight 
Revisited 

• Null Hypothesis (H0): person X is a male. 

• Alternative Hypothesis (H1): person X is a female. 

• Test Statistic: 𝜆 =  
ℒ(𝐻0;(ℎ,𝑤))

ℒ(𝐻1;(ℎ,𝑤))
 

• PDF: 
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Example: Sex by Height and Weight 
Revisited (continued) 

• Acceptance/Rejection region: binning too large to represent accurately, 
but essentially rejection region is a fraction of the left bin if we choose α = 
0.05 

• Compare: say that again we measure 75” and 250 lbs 

 

Data 
comparison 

Conclusion: 
Person X is 
consistent with 
being male 
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Hypothesis Tests: Extension to Non-
simple Hypothesis 

• What if we cannot specify our PDFs precisely? (as is actually most often 
the case in reality) 

• the most likely model for the null and alternative hypotheses given the 
data in the likelihood ratio instead of a-priori determined PDFs. 
– Parameterize the PDFs in terms of nuisance parameters. 

– Choose the values of these parameters (independently for the null and alternative 
hypotheses) such that the likelihood for the null hypothesis in the numerator is 
maximized, and again so that the likelihood for the alternative hypothesis in the 
denominator is maximized. 

– If one has an idea of what these nuisance parameters might be, a term can be added to 
the likelihood function, profiling the parameter, typically decreasing the likelihood the 
further the parameter is from its expected value. 
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Example: Counting Experiment 

• Suppose one wants to determine whether the activation of a beam causes 
a signal in a detector. 

• The detector takes measurements for an amount of time T without the 
beam turned on and measures m events 

• The detector then takes measurements for an amount of time T with the 
beam turned on and measures n events. 

• Null hypothesis: the beam creates no signal 

• Alternative hypothesis: the beam adds, on average, p events per time T 

• Test statistic: likelihood ratio 
– Likelihood function no profiling: 

𝑃𝑜𝑖𝑠 𝑛; 𝑏 + 𝑠 ∗ 𝑝 ∗ 𝑃𝑜𝑖𝑠(𝑚; 𝑏) where s = 0 for the null hypothesis and s = 1 for the 
alternative hypothesis 

– Likelihood function with profiling: 

𝑃𝑜𝑖𝑠 𝑛; 𝑏 + 𝑠 ∗ 𝑝 ∗ 𝑃𝑜𝑖𝑠(𝑚; 𝑏)*Gaus(b; bexp, bstd) 

 

Nuisance parameters: b 
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PLR: Generating the PDF 

• We already stated that in our use case, we cannot determine the PDFs for 
the null or alternative hypotheses completely, so how do we proceed? 

• Toy Monte Carlos: Generate data sets from our models using values of 
nuisance parameters drawn from our profiling. 

• The collection of test statistics calculated from these toy mcs forms our 
PDF. 
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Example: Counting Experiment 
(Continued) 

• PDF: 

 

q (test statistic, -2ln(λ)) 

# 
to

y 
m

cs
 

Red: signal + background 
Blue: background only 
Black: data 

n = 15, m=20 (but bkg 
only run went for 2T) 
p = 5 s = 1.1 
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Using the PLR to Discover a WIMP 

• Null hypothesis (H0): There are no WIMPs (parameter of interest = 0). 

• Alternative hypothesis (H1): There are WIMPs (parameter of interest ≠ 0). 

• Test Statistic: 𝜆 =  
ℒ(𝜇=0; 𝜃  )

ℒ(𝜇≠0;𝜃 )
 , 𝑞 = −2 ln 𝜆 

– Numerator: fix POI (represented by μ), let all other nuisance parameters (represented by 
θ) float and maximize. 

– Denominator: POI float in addition to all nuisance parameters 
• The single vs double hat only serves to represent that the values settled on for the nuisance parameters need 

not be the same in the two likelihood expressions. 

• Our significance for discovery is chosen to be 5σ, or α = 3x10-7. 
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Setting a Limit 

• The limit we set is the bound of a 90% frequentist confidence interval. 
– This is a procedure for setting boundaries that will result in a band covering the true 

parameter 90% of the time. 

– Note, this does NOT mean that there is a 90% chance that our parameter of interest lies 
within the band. 

• From the original confidence band paper (by Neyman) 

“Can we say that in this particular case the probability of the true value [falling between these limits] is equal to α? 
The answer is obviously in the negative. The parameter is an unknown constant, and no probability statement 
concerning its value may be made...“ 

Further expounding found on wikipedia… 

“[this idea] seems rooted in a (not uncommon) desire for Neyman-Pearson confidence intervals to provide 
something which they cannot legitimately provide; namely, a measure of the degree of probability, belief, or 
support that an unknown parameter value lies in a specific interval.” 
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Calculating the Confidence Interval 
(Limit) 

• The confidence interval for each mass is calculated independently. 

• We do what is referred to as hypothesis test inversion: 
– Null hypothesis (H0): WIMPs exist with the specific POI μ = μtest 

– Alternative hypothesis (H1): WIMPS exist (or don’t) with some other POI μ ≠ μtest 

• At each mass we run a series of hypothesis tests with different fixed values 
of μtest. 

– We carry out the same test procedure as before (Test Statistic: 𝜆 =  
ℒ(𝜇=μtest; 𝜃

  )

ℒ(𝜇≠μtest;𝜃
 )

 , 

𝑞 = −2 ln 𝜆) except that instead of simply comparing our data’s test statistic to an 
acceptance region to determine whether to accept or reject it, we calculate its p-value 
(the probability that the null hypothesis yields something more outlandish). 

• When we determine the value of μtest that yields a p-value of 0.1, we 
record that value of μtest and call it our limit. (this makes no sense to me) 
– Recall that a p-value of 0.1 means that 90% of the time with this hypothesis we would 

have gotten a result that better matches the null hypothesis (WIMPs with μtest). 
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Limit Setting for One Mass Illustration 

 

Hypothesis tests with varying 
c1

0 (eft couplnig constant) 

Looking for p-value of 0.1 
(off the right side here, didn’t go far 
enough) 
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Limit Setting for One 
Mass Illustration 
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Limit Setting for One 
Mass Illustration 



The LUX PLR: Misc Notes 

• The run4 analysis is done in 16 different bins I have called “subDetectors.” 
– 4 “Time Bins” and 4 “Z-Slices.” 

• The run4 analysis is done in “S2 space.”  That is, our spatial dimensions are 
S2r, S2phi, and drift (drift time).  S2r and S2phi refer to the position where 
the detector measures that the electrons freed by an event emerge from 
the liquid. 

• The PDF referred to in all of the introductory material is the PDF of the 
test statistic (q), there are many other PDFs that are about to be referred 
to, try not to get them confused as there are many layers of PDFs . 
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The LUX PLR: Likelihood 

• ℒ 𝜇;  𝜃 =  Pois(𝑛𝑜𝑏𝑠,𝑑;  𝑛𝑒𝑥𝑝,𝑑) PDF𝑑(𝑥𝑖; 𝜇)
𝑛𝑜𝑏𝑠,𝑑
𝑖=1𝑑∈𝑠𝑢𝑏𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑠   

 X  Gaus(𝑛𝑒𝑥𝑝,𝑝; 𝑛𝑒𝑥𝑝,𝑝, 𝜎𝑒𝑥𝑝,𝑝)

𝑝∈𝑛𝑢𝑖𝑠𝑎𝑛𝑐𝑒

  

 
 

– PDFd 𝑥𝑖;  𝜇 =  𝑛𝑒𝑥𝑝,𝑑,𝑠𝑖𝑔𝑓𝑑,𝑠𝑖𝑔 𝑥𝑖 +  𝑟𝑑,𝑝𝑛𝑒𝑥𝑝,𝑝𝑓𝑑,𝑝𝑝∈𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑥𝑖  

– 𝑛𝑒𝑥𝑝,𝑑 = 𝑟𝑑,𝑠𝑖𝑔𝑡𝜇 +  𝑟𝑑,𝑝𝑛𝑒𝑥𝑝,𝑝𝑝∈𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  where 𝑟𝑑,𝑝is the expected fraction 
of backgrounds (or signal) of type p in subDetector d, and t is a constant relating μ 
to the number of signal events. 

– fs are PDFs of the data-space (see below) specific to each subDetector and 
background type 

 
– Measured: nobs, 𝑥𝑖 = (𝑆1, 𝑆2, 𝑟, 𝑑𝑟𝑖𝑓𝑡, 𝜙, 𝑠𝑢𝑏𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟) 

– Nuisance: 𝑛𝑒𝑥𝑝,𝑝 
 

• Essentially: linear combination of signal PDF and background PDFs.  Vary 
the overall scale factors.  Penalize for varying away from our expected 
values. 

Number of events Shape information 

Profiling constraints 
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The LUX PLR: Implementation 

• Create a 5D PDF of the shape information  

– Weighted Sum of signal PDF and background PDFs 
• Current backgrounds: Boron 8 neutrinos, accidentals, Ar37, RnKr, 

comptonBottom, comptonRest, Kr83m, wall, (plan to add at least (alpha, 
n), and gamma-x). 

• Create a PDF for the profile of each nuisance parameter 
– Just a Gaussian for the total expected number of each of the backgrounds mentioned 

above currently.  Tested the effect of using G2 and a lindhart factor modifier as nuisance 
parameters but their effect was found to be negligible (at least at low energies). 

• Take the direct product of the above 5D PDF and each of constraint 
Gaussians. 
– The result is a 5 + nnuisance  dimensional PDF whose probability when evaluated on the 

data set is exactly the product of the red and green sections from the previous slide. 

• Feed the resulting PDF and the data into HypoTestInverterDemo (root PLR 
function) along with options governing other parameters (number of toy 
mcs to run per (mass, POI), what POIs to use, etc) 

• The code for this is in the EFTRun4.cxx file in the EFT limits branch of the 
LUX PLR code. 28 



The LUX PLR: Signal Model 
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The Signal PDF 

• Direct product of two independent PDFs for each subDetector 
– A 3D PDF uniform in (r, φ, z) transformed into (S1r, S2φ, drift) 

– A 2D PDF in (S1, S2) determined uniquely for each WIMP mass-operator-nucleon-
subDetector combination 

• Individual (S1, S2) PDFs saved root histograms 4 Z-Slices (drift bins) to a 
file, but 1 file per Wimp mass, operator, nucleon, time bin combination 

 

 

• Implementation in EFTRun4/RooSignalPDF.cxx   (.h) 
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Recoil Energy Spectrum 

• Generated by “DMFormFactor” mathematica 
package 

• Generate an analytic energy recoil spectrum for 
each isotope of Xenon (isotopes = {128, 129, 130, 
131, 132, 134, 136}) as well as each of the 
following masses: 
–  masses = 

{7,10,12,14,17,21,33,50,100,400,1000,4000} 

• Weight the analytic spectra  by their isotopic 
abundance and sum them together for each 
mass.  This leaves one spectrum for each mass 



Recoil Energy Spectrum 

• These analytic spectra are insanely complicated 
and difficult (as well as unnecessary) to port to 
the limits code, so we bin it. 
– Spectrum is integrated (numerically) out to 350 keV 

(beyond our max energy range for this analysis) to 
obtain an energy cutoff. 

– Spectrum is then integrated in 1 keV bins from 0 until 
the total integrated reaches 99% of the total from 0 to 
350 keV.  This number is recoreded and the 
integration then proceeds to a factor of 1.2 higher in 
recoil energy.  (This is because the standard deviation 
in the s1 and s2 distributions for a single energy is 
typically about 6 or 7%) 

– These bins and the values of the integrals are then 
stored and written to file. 
 



Recoil Energy Spectrum 

• Example text output (one for each 
coupling) 

Mass Maximum energy to use in analysis 

Bin Edges 
Counts per bin 



Nuclear Recoil Templates 

• Locations are generated randomly (uniformly) in real 
space. 

• Locations are mapped to S2 space using JPM (electric 
field at the point simultaneously obtained). 

• Fiducial cut applied, event is re-generated if the 
location does not pass. 

• NEST is used to generate an s1c and s2c for the event. 

• Events are sorted into z-slices based on drift time 

• Events generated until each z-slice has at least 10,000 
events 

• This is done for each energy 0.5 keV to 350 keV in 1 
keV increments for each time bin 



Nuclear Recoil Templates 



Nuclear Recoil Models 

• Take the Templates and weight each energy and each time bin and z-slice 
and weight them by the appropriate number from the Recoil Energy 
Spectrum and add them together. 

• Cut the S1 and S2 off at the mean values associated with the “maxEnergy” 
number, but add ones from higher energy to account for bleed-in. 

• Re-binned into an appropriate number of bins for the PLR code to run with 

Operator 8, isoscalar, 50 GeV, TB1 ZS1 

Re-bin 



The LUX PLR: Generic Background 
Model 

• Most Backgrounds have a weak correlation between their spatial and energy 
(S1, S2) distributions. 

• Like the signal model, the generic background model is a direct product of two 
independent PDFs for each subDetector 
– A 3D PDF in (S1r, S2φ, drift) determined uniquely for each background type (and subDetector) 

– A 2D PDF in (S1, S2) determined uniquely for each background type and subDetector 

• The nuisance parameter dictating the number of expected events of each 
background type scales each model (in addition to the fraction of these 
expected in each subDetector which is fixed, and is not a nuisance parameter). 

• Saved in the same manner as the signal PDFs except that there is also a file 
with the 3D spatial PDFs and each 2D PDF is normalized such that the full 
integral is the total number of expected events for that subDetector. 

 

• This is implemented in EFTRun4/RooBkgPdf.cxx   (.h)  (notice here the df in Pdf 
is lower-case, opposite of the Signal model.  Silly, I know, but I had two 
versions in development at once and this one worked and my brain works in 
funny ways and I never overwrote the original one) 
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The LUX PLR: Generic Background 
Model 

• Others are in charge of delivering these: 

– Most: Wei or someone using  

– Kr83m: Alice 

– (α, n): Me   

– γ-x: Peter Rossiter (not modeled yet, don’t know if 
we can make the uncorrelated model) 
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The LUX PLR: Wall Model 

• Events (usually Rn daughters) on the walls have much of their S2 absorbed 
by the wall and so can’t be included in the other background models. 

• Unfortunately both S2r and drift correlate with S2 so our generic 
background model won’t work for this model. 

• Instead, we currently have two proposed formats for the model 
– 3D PDF(S1, S2, drift) direct product 1D PDF(S2φ) multiplied by the a function of S2r 

f(S2r; S1, S2, drift, S2φ) which is itself a functional of the other parameters as indicated 

– 4D PDF(S1, S2 , S2φ, drift) multiplied by f(S2r; S1, S2, drift, S2φ) as described above 

• The 4D PDF is slightly harder to implement and harder on computation time 

 

• In charge of model: Claudio 

 

• Not implemented yet (format not quite decided, waiting on 
whether correlation between S2φ and other variables is low 
enough to use option 1) 
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The LUX PLR: Bells and Whistles 
(New to EFT) 

• The PLR can run a hypothesis test for a single specified value of the POI. 

• Signal models easy to create (as long as features larger scale than 1 keV). 

• Automatic S1 and S2 cutoff based on input signal recoil energy spectrum. 

• Most PDFs  have a set number of bins (configurable in Parameters.h), but 
S1 and S2 binning is determined dynamically based on the recoil 
spectrum. 

• Automatically toggles between using Kr83m exclusion periods (smaller 
exposure time) and a Kr83m background model and using the longer 
exposure time and excluding the Kr83m background based on if the recoil 
spectrum approaches Kr83m energies. 
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Code 

• Available at 
https://github.com/luxdarkmatter/LUXLimits/blob/E
FT/EFTRun4/ if you want to poke around and look at 
it. 
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Thanks! 

• With remaining time I could: 

1. Answer questions 

2. Walk through the code showing what is done 
where. 

3. Look at an example of a PLR for a simple 
counting experiment that I coded from scratch 
to get a better idea of what a PLR actually is. 

4. Cry because of all of your cruel criticism. 
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Limit Setting for One Mass Illustration 

Different run than before 

Intersects at ~3.2 signal events so 
our limit is the value of POI that 
yields an expected 3.2 signal events 44 


