
Pegasus : Introducing Integrity to Scientific
Workflows

Karan Vahi
vahi@isi.edu

https://pegasus.isi.edu

Pegasus http://pegasus.isi.edu
2

Compute Pipelines –
Building Blocks

HTCondor DAGMan
• DAGMan is a reliable and a scalable workflow executor

Sits on top of HTCondor Schedd
Can handle very large workflows

• Has useful reliability features in-built
Automatic job retries and rescue DAG’s (recover
from where you left off in case of failures)

• Throttling for jobs in a workflow

However, it is still up-to user to figure out
• Data Management

How do you ship in the small/large amounts data
required by your pipeline and protocols to use?

• How best to leverage different infrastructure setups
OSG has no shared filesystem while XSEDE and your
local campus cluster has one!

• Debug and Monitor Computations.
Correlate data across lots of log files.
Need to know what host a job ran on and how it was

invoked

• Restructure Workflows for Improved Performance
Short running tasks?
Data placement

Pegasus http://pegasus.isi.edu 3

Automate

Recover

Debug

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Provides to tools to handle and debug failures

Keeps track of data and files

NSF funded project since 2001, with close
Collaboration with HTCondor team.

Portable: Describe once; execute multiple times

Pegasus https://pegasus.isi.edu 4

cleanup job
Removes unused data

stage-in job

stage-out job

registration job

Transfers the workflow input data

Transfers the workflow output data

Registers the workflow output data

clustered job
Groups small jobs together
to improve performance

DAGdirected-acyclic graphsDAG in XML

Portable Description
Users don’t worry about
low level execution details

Condor I/O (HTCondor pools, OSG, …)
• Worker nodes do not share a file system
• Data is pulled from / pushed to the submit host

via HTCondor file transfers
• Staging site is the submit host

Non-shared File System (clouds, OSG, …)
• Worker nodes do not share a file system
• Data is pulled / pushed from a staging site,

possibly not co-located with the computation

Shared File System (HPC sites, XSEDE, Campus
clusters, …)

• I/O is directly against the shared file system

Data Staging Configurations

Submit
Host

Compute Site

Shared
FS

WN

WN

HPC Cluster

Compute Site

Submit
Host

Staging
Site

WN

WN

Amazon
EC2 with S3

Submit
Host

Local FS

Compute Site

WN

WN

Jobs
Data

Pegasus Guarantee - Wherever and whenever a job runs
it’s inputs will be in the directory where it is launched.

pegasus-transfer
• Pegasus’ internal data transfer tool with support for a number

of different protocols

• Directory creation, file removal
• If protocol supports, used for cleanup

• Two stage transfers
• e.g. GridFTP to S3 = GridFTP to local file, local file to S3

• Parallel transfers

• Automatic retries

• Credential management
• Uses the appropriate credential for each site and each protocol (even

3rd party transfers)

HTTP
SCP
GridFTP
Globus Online
iRods
Amazon S3
Google Storage
SRM
FDT
stashcp
cp
ln -s

cacr.iu.edu/projects/swip/

Scientific Workflow Integrity with Pegasus
NSF CICI Awards 1642070, 1642053, and 1642090

GOALS

Provide additional assurances that a scientific
workflow is not accidentally or maliciously
tampered with during its execution

Allow for detection of modification to its data or
executables at later dates to facilitate
reproducibility.

Integrate cryptographic support for data
integrity into the Pegasus Workflow
Management System.

PIs: Von Welch, Ilya Baldin, Ewa Deelman, Steve Myers
Team: Omkar Bhide, Rafael Ferrieira da Silva, Randy Heiland,
Anirban Mandal, Rajiv Mayani, Mats Rynge, Karan Vahi

cacr.iu.edu/projects/swip/

Challenges to Scientific Data Integrity

Modern IT systems are not
perfect - errors creep in.

At modern “Big Data” sizes
we are starting to see
checksums breaking down.

Plus there is the threat of
intentional changes:
malicious attackers, insider
threats, etc.

cacr.iu.edu/projects/swip/

Motivation:
CERN Study of
Disk Errors

Examined Disk, Memory, RAID 5
errors.

“The error rates are at the 10-7 level,
but with complicated patterns.” E.g.
80% of disk errors were 64k regions of
corruption.

Explored many fixes and their often
significant performance trade-offs.

https://indico.cern.ch/event/13797/contributions/1362288/attachments/115080/163419/Data_integrity_v3.pdf

cacr.iu.edu/projects/swip/

Motivation:
Network Corruption
Network router software inadvertently corrupts
TCP data and checksum!

XSEDE and Internet2 example from 2013.

Second similar case in 2017 example with
FreeSurfer/Fsurf project.

https://www.xsede.org/news/-/news/item/6390

Brocade TSB 2013-162-A

cacr.iu.edu/projects/swip/

Motivation:
Software failure
Bug in StashCache data transfer
software would occasionally cause
silent failure (failed but returned
zero).

Internal to the workflow this was
detected when input to a stage of the
workflow was detected as corrupted
and retry invoked. (60k retries and an
extra 2 years of cpu hours!)

However, failures in the final staging
out of data were not detected
because their was no workflow next
stage to catch the errors.

The workflow management system,
believing workflow was complete,
cleaned up, so final data incomplete
and all intermediary data lost. Ten
CPU*years of computing came to
naught.

cacr.iu.edu/projects/swip/

Enter application-level checksums

Application-level checksums
address these and other issues
(e.g. malicious changes).

In use by many data transfer
applications: scp,
Globus/GridFTP, some parts of
HTCondor, etc.

To include all aspects of the
application workflow, requires
either manual application by a
researcher or integration into the
application(s).

Automatic Integrity Checking - Goals

• Capture data corruption in a workflow by performing integrity
checks on data

• Come up with a way to query , record and enforce checksums for
different types of files
• Raw input files – input files fetch from input data server
• Intermediate files – files created by jobs in the workflow
• Output files – final output files a user is actually interested in, and

transferred to output site

• Modify Pegasus to perform integrity checksums at appropriate
places in the workflow.

• Provide users a dial on scope of integrity checking

cacr.iu.edu/projects/swip/

Automatic Integrity Checking
Pegasus will perform integrity
checksums on input files before a
job starts on the remote node.

● For raw inputs, checksums specified
in the input replica catalog along with
file locations. Can compute
checksums while transferring if not
specified.

● All intermediate and output files
checksums are generated and tracked
within the system.

● Support for sha256 checksums

Failure is triggered if checksums
fail
Introduced in Pegasus 4.9

cacr.iu.edu/projects/swip/

Initial Results with Integrity Checking on

• OSG-KINC workflow (50606 jobs) encountered 60 integrity errors in the wild (production
OSG). The problematic jobs were automatically retried and the workflow finished
successfully.

• The 60 errors took place on 3 different hosts. The first one at UColorado, and group 2
and 3 at UNL hosts.

Error Analysis

• Host 2 had 3 errors, all the same bad checksum for the "kinc" executable with only a few
seconds in between the jobs.

• Host 3 had 56 errors, all the same bad checksum for the same data file, and over the timespan
of 64 minutes. The site level cache still had a copy of this file and it was the correct file. Thus we
suspect that the node level cache got corrupted.

cacr.iu.edu/projects/swip/

Checksum Overheads
• We have instrumented overheads and are available to end users via pegasus-statistics.

• Other sample overheads on real world workflows
• Ariella Gladstein’s population modeling workflow

• A 5,000 job workflow used up 167 days and 16 hours of core hours, while spending 2
hours and 42 minutes doing checksum verification, with an overhead of 0.068%.

• A smaller example is the Dark Energy Survey Weak Lensing Pipeline with 131 jobs.

• It used up 2 hours and 19 minutes of cumulative core hours, and 8 minutes and 43
seconds of checksum verification. The overhead was 0.062%.

1000 Node OSG Kinc Workflow
Overhead of 0.054 % incurred

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website
https://pegasus.isi.edu

Users Mailing List
pegasus-users@isi.edu

Support
pegasus-support@isi.edu

Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of
the month, where we address user
questions and also apprise the
community of new developments

Pegasus
Automate, recover, and debug scientific computations.

Thank You

Questions?
Karan Vahi
vahi@isi.edu

Karan Vahi

Rafael Ferreira da Silva

Rajiv Mayani

Mats Rynge

Ewa Deelman

