

IceCube Computing

Benedikt Riedel HTCondor Week 2019 May 21 2019

IceCube Computing – What drives us?

- Novel instrument in multiple fields
- Broad science abilities, e.g. astrophysics, particle physics, and earth sciences
- Lots of data that needs to be processed in different ways
 Lots of simulation that needs to
 - be generated

IceCube Computing – 30000 Foot View

- Classical Particle Physics Computing
 - Trivially/ingeniously parallelizable Grid Computing!
 - "Events" Time period of interest
 - Number of channels varies between events
 - Ideally would compute on a per event-basis
- Several caveats
 - No direct and continuous network link to experiment
 - Extreme conditions at experiment (-40 C is warm, desert)
 - Simulations require "specialized" hardware (GPUs)
 - In-house developed and specialized software required
 - Large energy range cause scheduling difficulties Predict resource needs, run time, etc.

South Pole Cyberinfrastructure – Data Management

- Data Rate 3 TB/day
- Using both data transfer options for data transfer Drives/tapes and satellite
- Limited bandwidth from South Pole to Northern Hemisphere – 125 GB/day
- High bandwidth, high latency Disks transfers every austral summer
- Need to filter data down to from ~3 TB to ~80 GB

South Pole Cyberinfrastructure – IceCube Lab

- ~500 core filtering cluster
- ~100 machines for detector readout
- Fiber connection to main station
- Data is triggered and filtered at the lab and shipped off to main station for "archival" and satellite transfer
- Cooling is an issue if air handlers freeze shut – Front of room freezes while back at 80 C
- Power can drop out randomly

South Pole Cyberinfrastructure – Station

- Amundsen-Scott South Pole
 Station
- Lab with disk arrays for archival and servers to transfer data US Antarctic Program satellite transfer

South Pole Cyberinfrastructure – Data Flow

South Pole Cyberinfrastructure – Alerts

- Alerting the community about interesting events Multimessenger Astrophysics (one of NSF's 10 Big Ideas)
- Want to alert the community at large about interesting events
- Fast event stream that is separate from main data frame
- Special filtering based on previous analyses
- Alerts are currently limited by
 - Knowledge about neutrino sources Is it astrophysical?
 - Available CPUs for follow-up studies to improve error on direction on the sky – Very bursty usage, 12000 cores for 30 min once a month

Northern Hemisphere Cyberinfrastructure

- Central Data Processing and Analysis Facility at UW-Madison
 - ~6500 core, ~300 GPU cluster
 - ~10 PB storage Roughly even split between data, simulation, analysis output, user data
 - Connected to SciDMZ through Starlight ESNet for connection to DOE facilities
 - End user analysis infrastructure
 - Access to IceCube Grid, OSG, and EGI
- Every group has respective campus-based resources, e.g. campus cluster
- Pledge system to contribute CPU and GPU
- Use XSEDE (and DOE) resources Mostly for GPU, scavenge allocated CPU, DOE resources (Titan) hard to use or just added (NERSC)
- Use CVMFS to distribute software

Northern Hemisphere Cyberinfrastructure – IceCube Grid

- IceCube has computing allocations at campus facilities, national facilities (XSEDE), and uses opportunistic computing
- Resources are a mix of both CPU and GPU
- Depending on facility the usage ranges from few hours to ~55M hours per year
- In-house developed software to tie resources together and workload management

Northern Hemisphere Cyberinfrastructure – IceCube Grid

- Steadily expanding resources
- Fairly continuous use
- Slow transition to the "grid" for users – Biggest pain points are data access and job failure
- Big issue Lots of scavenging of resources and transition between CPU and GPU resources means a lot of data movement

Northern Hemisphere Cyberinfrastructure – Pyglidein

- Pyglidein In-house developed Python library that starts jobs on remote sites – Pull jobs to remote site
 - Lightweight as possible Knows how to query server and submit to local scheduler

Server-side

- Server reads a HTCondor queue
- Determines job requirements
- Client-side
- Client periodically queries server for jobs
- If jobs match site-specific requirements, submit a job
- Job will execute a HTCondor startd and connect back to global pool
- No advanced logic
 - No on limit number of a times a task is submitted Will be used by other jobs or die quickly
 - No job routing

Northern Hemisphere Cyberinfrastructure – GPUs

- Why does IceCube need GPUs? Propagating photons produced by neutrino interaction products in the ice
- Calibration has to be all done *in-situ* Little information about optical properties are beforehand
- Previously statistically modelled
 - Could not account for all optical properties of the ice
 - Discovered new optical features in the ice GPUs provide 100-200x speed up compared to CPUs Still a scarce resources – Most GPUs are bought by
 - memberinstitutions
 - Currently ~300 GPUs dedicated, another ~500 GPUs pledged
- Biggest bottleneck Resource contention

Northern Hemisphere Cyberinfrastructure – Ice Model

- Modelling the ice is very important Esp. In era of Multimessenger Astrophysics
- Want to alert the community at large about interesting events
- Need to inform telescopes where to point
- Ice model can shift the location of event on sky significantly
- Optical telescopes have a minute area of the sky they cover
- Need to be as precise as possible, else wasting valuable telescope time or will miss source (transient sources)

Northern Hemisphere Cyberinfrastructure – Current Projects

- Cloud Computing E–CAS award from Internet2
- Machine Learning
 - Machine learning becoming more popular
 - Building first test infrastructure Already have experience with running and using GPUs
 - First results are promising Needs more study before deployment in production
- Backups
 - Refactoring code that modes data to tape backups at DESY and NERSC
 - Part of CESER grant
- Expanding resources More XSEDE resources and campus resources
- Automated and user CVMFS builds

Northern Hemisphere Cyberinfrastructure – Future Projects

- Re-thinking data organization, management, and access
 - Xrootd-based solution?
 - Spreading data across multiple locations?
 - Ceph-based solution?
 - www-based solution?
- Other resources
 - Cloud
 - Bursting into cloud for multimessenger studies?
 - Using cloud GPUs?
 - Cloud machine learning resources?
 - Resource sharing in multimessenger astronomy
- Continuous integration/deployment
 - Starting with production software
 - Science software How to test properly?

Future of IceCube

IceCube Upgrade

- Deploying next generation detector modules in an in-fill
- Lower energy threshold
- Test new technology and designs for future expansions
- IceCube-Gen2
 - Much larger detector focused on high energies
 - Including several ways to do astroparticle physics at the South Pole Radio detection of neutrinos, air Cherenkov detectors, etc.
- Will need to rethink computing

Summary

- Globally distributed, heterogenous resources pool
- Atypical usage model, resources requirements and software stack
 - Mostly opportunistic and shared usage
 - Accelerators (GPUs)
 - Broad physics reach Lots of physics to simulate
 - Data flow includes leg across satellite
 - "Analysis" software is produced in-house
 - "Standard" packages, e.g. GEANT4, don't support everything or don't exist
 - Niche dependencies, e.g. CORSIKA (air showers)
- Detector up time at 99+% level
- Significant changes of requirements over the course of experiment Accelerators, Multimessenger Astrophysics, alerting, etc.

Thank you!

Questions?