
Kevin Retzke
HTCondor Week
23 May 2019

Event-Sourced Monitoring of Your
HTCondor Cluster

• Collect metrics (e.g. how many jobs are running) at regular
intervals
– Historical trends
– Throughput
– Usage by user
– Health

• You already do this

• … Right?

“Traditional” Sample-Based Monitoring

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster2

A Lot!

What happens between samples?

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster3

• Event Sourcing: collecting and storing every change to the
state of a system instead of or in addition to storing the
current state.
– “realtime” data with minimal collection lag. Collecting thousands

of metrics for hundreds of thousands of jobs can take a while.
– “infinite” granularity, down to the precision of your timestamps (I

can has millis?).
– Numerous open-source tools for working with event data, e.g.

• Kafka https://kafka.apache.org/
• Spark Streaming https://spark.apache.org/streaming/
• Faust https://faust.readthedocs.io/en/latest/

– State can be determined at any point of time…

Event-Based Monitoring

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster4

https://kafka.apache.org/
https://spark.apache.org/streaming/
https://faust.readthedocs.io/en/latest/

… if you have the state corresponding to some exact known
point in your events.
… and you aren’t missing any events.

Tracking State

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster5

…let’s focus on using events directly

(for now – there are some interesting tools in this area, e.g.
https://eventstore.org/ that I want to explore more)

https://eventstore.org/

• Fact: computers break
• How can we detect a bad worker node (often at another

site*), that is causing jobs to fail, and stop sending jobs there
before it sucks up the entire queue (hence “blackhole”)?

• Events provide the perfect data set to monitor for blackholes.
– Lots of failing jobs
– No successful jobs
– Held jobs
– Shadow exceptions
– Disconnections
– No events

Use Case: “Blackhole” Node Detection

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster6

* But never at UW

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster7

Monitor in Grafana
Send alerts to
Slack (or email,
or ticket, etc)

• How do you quickly determine the status of hundreds of
submissions (a cluster or DAG) with thousands of jobs each,
as fast as a user can push F5, without overwhelming your
schedds?

• Count the events:
SubmitEvents <= JobTerminatedEvents+JobAbortedEvents

• Or if you want to consider it done when all the jobs are
terminated or held:

SubmitEvents <= JobTerminatedEvents+(JobHeldEvents-
JobReleaseEvents)+JobAbortedEvents

Use Case: Is My Submission Done Yet?

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster8

Ah! Ah! Ah! I love to count!

• Enable global event log in schedd, just set the path and file
name:

EVENT_LOG = /var/log/condor/EventLog
• Add additional ClassAd attributes (optional, but

recommended, and required for our logstash config):
EVENT_LOG_JOB_AD_INFORMATION_ATTRS = Owner DAGManJobId \

MachineAttrMachine0 JobCurrentStartDate
– Note that this adds a second “information” event for every

trigger event.
• May need to add machine attributes to job ClassAds:

SYSTEM_JOB_MACHINE_ATTRS = Machine

• Job event log code reference:
http://research.cs.wisc.edu/htcondor/manual/current/JobEventLogCodes.html#x181-1245000B.2

HOWTO: Enable in HTCondor

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster9

http://research.cs.wisc.edu/htcondor/manual/current/JobEventLogCodes.html

001 (18938569.000.000) 05/20 12:14:51 Job executing on host:
<131.225.167.107:9618?addrs=131.225.167.107-
9618&noUDP&sock=13725_c970_3>
...
028 (18938569.000.000) 05/20 12:14:51 Job ad information event
triggered.
Proc = 0
MachineAttrMachine0 = "fnpc7212.fnal.gov"
EventTime = "2019-05-20T12:14:51"
TriggerEventTypeName = "ULOG_EXECUTE"
Jobsub_Group = "sbnd"
MachineAttrGLIDEIN_Site0 = "FermiGrid"
TriggerEventTypeNumber = 1
ExecuteHost = "<131.225.167.107:9618?addrs=131.225.167.107-
9618&noUDP&sock=13725_c970_3>"
JobCurrentStartDate = 1558372490
MyType = "ExecuteEvent"
Owner = "aezeribe"
MachineAttrGLIDEIN_ResourceName0 = "GPGrid"
Cluster = 18938569
Subproc = 0
EventTypeNumber = 28
...

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster10

Sample Event

Job Execute Event
“trigger event”

Information Event

Job ID Timestamp

• Logstash: Swiss Army Knife of data
– https://www.elastic.co/products/logstash
– Config: https://github.com/fifemon/logstash-config/blob/master/condor.logstash.conf

• File input
path => "/var/log/condor/EventLog"

• Split events
delimiter => "

...
"

• Combine multiple lines: any line that doesn’t begin with a
number belongs to the previous event.

codec => multiline {
pattern => "^[^\d]"
what => "previous"

}

HOWTO: Collect Events

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster11

https://www.elastic.co/products/logstash
https://github.com/fifemon/logstash-config/blob/master/condor.logstash.conf

• Grok filter to match events
match => {

"message" => [
"%{CONDOR_EVENT:event}

%{DATA:event_message}\n%{GREEDYDATA:event_body}",
"%{CONDOR_EVENT:event} %{DATA:event_message}"

]
}

– Grok patterns to get job ID and timestamp from each event
CONDOR_TIMESTAMP %{MONTHNUM}/%{MONTHDAY} %{TIME}
CONDOR_EVENT %{INT:event_code}
\(%{INT:cluster:int}\.%{INT:process:int}\.%{INT:subprocess:int}\)
%{CONDOR_TIMESTAMP:condor_timestamp}

– https://github.com/fifemon/logstash-config/blob/master/patterns/condor

HOWTO: Process events

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster12

https://github.com/fifemon/logstash-config/blob/master/patterns/condor

• Aggregate filter: Save trigger event
task_id => "%{cluster}.%{process}.%{subprocess}"
code => "map['trigger_event_message']=event['message']"
map_action => "create”

• Aggregate filter: Add trigger event to information event
task_id => "%{cluster}.%{process}.%{subprocess}"
code => "event['trigger_event_message']=map['trigger_event_message']"
map_action => "update"
end_of_task => true
timeout => "60”

• Grok patterns to pull interesting fields from trigger event
match => {

"trigger_event_message" => [
"%{CONDOR_EVENT_001}",
"%{CONDOR_EVENT_006}",
…

HOWTO: Combine Events

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster13

• Store in Elasticsearch
Output {

elasticsearch {
hosts => [”localhost:9200"]
index => ”condor-events-%{+YYYY.MM}"

}
}

• Analyze in Kibana and Grafana

HOWTO: Store and Analyze Events

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster14

Events

Snapshot
Metrics

Data
Transfers

Raw
ClassAds

Holistic HTCondor Monitoring

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster15

• Snapshot metrics to time-series database
– https://github.com/fifemon/probes
– (several forks with different features, some efforts to merge)

• Job history collection to elasticsearch with filebeat and
logstash

• Raw classad collection to elasticsearch with condorbeat
– https://github.com/retzkek/condorbeat

• Data transfers – very little through HTCondor itself
– Client log (IFDH) through rsyslog to elasticsearch with logstash
– dCache transfer history to elasticsearch with logstash

• Everything routed through Kafka for resilience, replaying,
testing, etc.

Other Parts of Holistic Monitoring at Fermilab

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster16

https://github.com/fifemon/probes
https://github.com/retzkek/condorbeat

5/23/19 Kevin Retzke | Event-Sourced Monitoring of Your HTCondor Cluster17

