

High-throughput processing of telemetry data

D.J. Lee

Brigham Young University

C. Mike and V.E. Howle

Texas Tech University

R.A. Erickson

Upper Midwest Environmental Sciences Center

United States Geological Survey

- Core Science Systems
- Ecosystems
- Energy and Minerals
- Environmental Health
- Land Resources
- Natural Hazards
- Water Resources

Upper Midwest Environmental Science Center

Providing the scientific information needed by managers, decision makers, and the public to protect, enhance, and restore the ecosystems in the Upper Mississippi River Basin, the Midwest, and worldwide.

Photo by Ryan Hagerty, USFWS

Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds

Aaron R. Cupp, Richard A. Erickson, Kim T. Fredricks, Nicholas M. Swyers, Tyson W. Hatton, and Jon J. Amberg

Data challenges

- 100GB or more per trial
- Requires reasonable turn around times

Old data workflow

- Uploaded and processed annually (prior to 2019)
 - Run locally on any free machines
 - No cluster management system
- Now processed in cloud (2019)
 - Unsure of cloud vendor
 - Workflow lacks transparency
- 3rd party collaborator uses closed source software

Data processing steps

- Convert return times to coordinates
- Process coordinates to cleanup data
 - Errors caused by collection process
 - Errors caused by multiple solution to step 1

Software

- Docker to containerize code
- Python

Converting to coordinates

Converting to coordinates

- Match points to receivers
 - e.g., signal every 2.1 ms might belong to a fish
- Solving Pythagorean theorem

$$t_i - t_j = \frac{1}{c} \left[\sqrt{(h_{ix} - F_x)^2 + (h_{iy} - F_y)^2 + (h_{iz} - F_z)^2} - \sqrt{(h_{jx} - F_x)^2 + (h_{jy} - F_y)^2 + (h_{jz} - F_z)^2} \right]$$

Data cleaning

The goal is to reconstruct the fish trajectory from the output of the hydroacoustics system.

Hydroacoustics Data

Methods

- Convolutional filtering
- Clustering
- Neural networks

Our solution

- Denoising auto-encoder (DAE)
 - The encoder and decoder are implemented with the recurrent neural networks (RNN).

Denoising auto-encoder

Computer vision application with DAE [OpenDeep].

DAE structure [Deep Learning A-Z[™]].

Recurrent neural networks

RNN structure [colah's blog].

Training data preparation

- Representation
- Generation
 - Ground truth
 - Corrupted ground truth

Results

User interface

