
At HTCondor Week 2019

Presented by Igor Sfiligoi, UCSD
for the PRP team

An opportunistic HTCondor pool 
inside an interactive-friendly 

Kubernetes cluster

HTCondor Week, May 2019 1



Outline

•Where do I come from?
•What we did?
• How is it working?
• Looking head

HTCondor Week, May 2019 2



The Pacific Research Platform

• The PRP originally created as a 
regional networking project
• Establishing end-to-end links 

between 10Gbps and 100Gbps

(GDC)

HTCondor Week, May 2019 3



PRP

PRPv2 Nautilus 
Transoceanic
Nodes

Guam

Asian Pacific RP
Transoceanic
Nodes

Australia

Korea

Singapore

Netherlands

10G 35TB
UvA

FIONA6
10G 35TB

KISTI

10G 35TB
U of Guam

10G 35TB
U of Queensland

The Pacific Research Platform

• The PRP originally created as a 
regional networking project
• Establishing end-to-end links 

between 10Gbps and 100Gbps

• Expanded nationally since
• And beyond, too

CENIC/PW Link

40G FIONA
UIUC

40G 160TB
U Hawaii

40G 160TB
NCAR-WY

40G 192TB
UWashington

40G FIONA
I2 Chicago

40G FIONA
I2 NYC 

40G FIONA
I2 Kansas City

40G FIONA1
UIC

HTCondor Week, May 2019 4



The Pacific Research Platform

• Recently the PRP evolved in a major resource provider, too
• Because scientists really need more than bandwidth tests
• They need to share their data at high speed and compute on it, too

• The PRP now also provides
• Extensive compute power – About 330 GPUs and 3.5k CPU cores
• A large distributed storage area - About 2 PBytes

• Select user communities now directly use 
all the resources PRP has to offer
• Still doing all the network R&D in the same setup, too
• We call it the Nautilus cluster

HTCondor Week, May 2019 5



Kubernetes as a resource manager

• Large and active development and support communityIndustry standard

• More freedom for usersContainer based

• Allows for easy mixing of service and user workloadsFlexible scheduling

HTCondor Week, May 2019 6



Designed for interactive use

• Makes for very happy usersUsers expect to get what 
they need when they need it

• And is typically short in durationCongestion happens only 
very rarely

HTCondor Week, May 2019 7



Opportunistic use

No congestion Idle compute 
resources

Time for 
opportunistic 

use

HTCondor Week, May 2019 8



Kubernetes priorities

• Low priority pods only start if no demand 
from higher priority ones

Priorities natively 
supported in Kubernetes

• Low priority pods killed the moment 
a high priority pod needs the resources

Preemption out of the 
box

• Just keep enough low-priority pods in the system Perfect for opportunistic 
use

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
HTCondor Week, May 2019 9

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/


HTCondor as the OSG helper

PRP wanted to give opportunistic resources to Open Science Grid (OSG) users
• Since they can tolerate preemption

But OSG does not have native support for Kubernetes
• Supports only resources provided by batch systems

We thus instantiated an HTCondor pool
• As a fully Kubernetes/Containerized deployment

HTCondor Week, May 2019 10



HTCondor in a (set of) container(s)

• Just create an image with HTCondor binaries in it!
• Configuration injected through Kubernetes pod config

Putting HTCondor in a set 
of containers is not hard

• The Collector must be discoverable – Kubernetes service
• Everything else just works from there

HTCondor deals nicely 
with ephemeral IPs

• And potentially for the Negotiator, if long term accounting desired
• Everything else can live off ephemeral storage

Persistency needed for 
the Schedd(s)

HTCondor Week, May 2019 11



Service vs Opportunistic

Collector and Schedd(s) deployed as high priority service pods
• Should be running at all times
• Few pods, not high CPU or GPU users, so OK
• Using Kubernetes Deployment to re-start the pods in case of HW problems and/or maintenance
• Kubernetes Service used to get a persistent routing IP to the collector pod

Startds deployed as low priority pods
• Hundreds of pods in the Kubernetes queue at all times, many in Pending state
• HTCondor Startd configured to accept jobs as soon as it starts and forever after
• If pod preempted, HTCondor gets a SIGTERM and has a few seconds to go away

Pure opportunistic

HTCondor Week, May 2019 12



Then came the users

• Well, until we had more than a single userEverything was working nicely, 
until we let in real users

• So they can use any weird software they likeOSG users got used 
to rely on Containers

• Cannot launch a user-provided containerBut HTCondor Startd already 
running inside a container!

• How many of each kind?So I need to provide
user-specific execute pods

HTCondor Week, May 2019 13

Not without 
elevated privileges



Then came the users

• Well, until we had more than a single userEverything was working nicely, 
until we let in real users

• So they can use any weird software they likeOSG users got used 
to rely on Containers

• Cannot launch a user-provided containerBut HTCondor Startd already 
running inside a container!

• How many of each kind?So I need to provide
user-specific execute pods

HTCondor Week, May 2019 14



Dealing with many opportunistic pod types

• A different kind of pod could use that resource
• A glidein-like setup would solve that

Having idle Startd pods 
not OK anymore

• They will just terminate without ever running a job
• Who should regulate the “glidein pressure”?

Keeping pods without users 
not OK anymore

• Kubernetes scheduling is basically just priority-FIFOHow do I manage fair share 
between different pod types?

• Ideally, HTCondor should have native Kubernetes supportHow am I to know what 
Container images users want?

HTCondor Week, May 2019 15



Dealing with many opportunistic pod types

• A different kind of pod could use that resource
• A glidein-like setup would solve that

Having idle Startd pods 
not OK anymore

• They will just terminate without ever running a job
• Who should regulate the “glidein pressure”?

Keeping pods without users 
not OK anymore

• Kubernetes scheduling is basically just priority-FIFOHow do I manage fair share 
between different pod types?

• Ideally, HTCondor should have native Kubernetes supportHow am I to know what 
Container images users want?

I know how to 
implement this.

HTCondor Week, May 2019 16



Dealing with many opportunistic pod types

• A different kind of pod could use that resource
• A glidein-like setup would solve that

Having idle Startd pods 
not OK anymore

• They will just terminate without ever running a job
• Who should regulate the “glidein pressure”?

Keeping pods without users 
not OK anymore

• Kubernetes scheduling is basically just priority-FIFOHow do I manage fair share 
between different pod types?

• Ideally, HTCondor should have native Kubernetes supportHow am I to know what 
Container images users want?

I was told
this is coming.

HTCondor Week, May 2019 17



Dealing with many opportunistic pod types

• A different kind of pod could use that resource
• A glidein-like setup would solve that

Having idle Startd pods 
not OK anymore

• They will just terminate without ever running a job
• Who should regulate the “glidein pressure”?

Keeping pods without users 
not OK anymore

• Kubernetes scheduling is basically just priority-FIFOHow do I manage fair share 
between different pod types?

• Ideally, HTCondor should have native Kubernetes supportHow am I to know what 
Container images users want?

In OSG-land, glideinWMS
solves this for me.

HTCondor Week, May 2019 18



Dealing with many opportunistic pod types

• A different kind of pod could use that resource
• A glidein-like setup would solve that

Having idle Startd pods 
not OK anymore

• They will just terminate without ever running a job
• Who should regulate the “glidein pressure”?

Keeping pods without users 
not OK anymore

• Kubernetes scheduling is basically just priority-FIFOHow do I manage fair share 
between different pod types?

• Ideally, HTCondor should have native Kubernetes supportHow am I to know what 
Container images users want?

No concrete plans on how 
to address these yet.

HTCondor Week, May 2019 19



Dealing with many opportunistic pod types

For now, I just periodically adjust the balance
• A completely manual process

Currently supporting only a few, well behaved users
• Maybe not optimal, but good enough

But looking forward to a more automated future

HTCondor Week, May 2019 20



Are side-containers an option?

Ideally, I do want to use user-provided, per-job Containers
• Running HTCondor and user jobs in separate pods 

not an option due to opportunistic nature

But Kubernetes pods are made of several Containers
• Could I run HTCondor in a dedicated Container?
• Then start the user pod in a side-container?

Pretty sure currently not supported
• But, at least in principle, fits the architecture
• Would also need HTCondor native support 

Pod

HTCondor container

User job container

HTCondor Week, May 2019 21



Will nested 
Containers be 
a reality soon?

It has been pointed out to me 
that latest CentOS supports 
unprivileged Singularity

Have not tied it out

• Probably I should

Cannot currently assume all of my 
nodes have a recent-enough kernel
• But eventually will get there

HTCondor Week, May 2019 22



Looking ahead

Looking forward to a more automated future

Will do what I have to myself

Would be happier if I could use off-the-shelf solutions

HTCondor Week, May 2019 23



A final picture

• Opportunistic GPU usage over the past few months

HTCondor Week, May 2019 24



Summary

• We created an opportunistic HTCondor
pool in the PRP Kubernetes cluster
• OSG users can now use 

any otherwise-unused cycles

• The lack of nested containerization 
forces us to have 
multiple execute pod types
• Some micromanagement 

currently needed, hoping for 
more automation in the future 

HTCondor Week, May 2019 25



Acknowledgents

This work was partially funded by 
US National Science Foundation (NSF) awards 
CNS-1456638, CNS-1730158, 
ACI-1540112, ACI-1541349, 
OAC-1826967, OAC 1450871, 
OAC-1659169 and OAC-1841530.

HTCondor Week, May 2019 26


