
master-worker applications
with

work queue

Ben Tovar
btovar@nd.edu

HTCondor Week 2019

where you start

"This demo task runs on my laptop, but I need much more for the real
application. It would be great if we can run O(25K) tasks like this on this
cloud/grid/cluster I have heard so much about."

who we are

The Cooperative Computing Lab
Computer Science and Engineering

University of Notre Dame

CCL Objectives

• Harness all the resources that are available: desktops,
clusters, clouds, and grids.

• Make it easy to scale up from one desktop to national
scale infrastructure.

• Provide familiar interfaces that make it easy to connect
existing apps together.

• Allow portability across operating systems, storage
systems, middleware…

• Make simple things easy, and complex things possible.
• No special privileges required.

4

Cooperative Computing Lab

CCTools

• Open source, GNU General Public License.

• Compiles in 1-2 minutes, installs in $HOME.

• Runs on Linux, Solaris, MacOS, Cygwin, FreeBSD, …

• Interoperates with many distributed computing systems.

– Condor, SGE, Torque, Globus, iRODS, Hadoop…

6

most used components

Makeflow: A portable workflow manager
What to run?

Work Queue: A lightweight distributed execution system
What to run and where to run it?

Chirp: A user-level distributed filesystem
Where to get/put the data?

Parrot: A personal user-level virtual file system
How to read/write the data?

7

agenda

Introduction to master-worker applications
5min

Writing master-worker applications with work queue
40 min

Setting-up CCTools
5min

8

master-worker applications

master-worker application

In a master worker application...

10

master process

master-worker application

the master process generates tasks, puts them in
a queue...

11

master process

tasktask
tasktask

master-worker application

… delivers them to worker processes to execute...

12

master process

task

worker process
task

task

worker process

task

task

master-worker application

… waits for workers to execute tasks ...

13

master process

task

worker process
tasktask

worker process
task

master-worker application

and gathers the results on completion.

14

master process

task

worker process
result task

worker processresult

master-worker application

and on and on until no more tasks are generated.

15

master process

worker process

result

task

worker process

result

task

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When is it most beneficial?

● Lots of small tasks:
○ Wait time in the condor queue proportional to the number of

workers, not the number of tasks.

● Workers can cache common input files, reducing transfer times.

● Workers may run in any pool, or resource you have access (including
non-condor resources).

master-worker application

17

master process

worker process in
campus condor cluster

worker process
in Amazon
cloud resources

$$$

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When it is not beneficial?

● Tasks are not easily described in terms of input-outputs.
○ (e.g. streaming)

● You need to use an advanced feature of condor.

● You like to write highly customized condor submit files.

● The worker process interferes with your task. (Wrappers all the way down.)

writing master-worker
applications with

work queue

work queue when describing workflows

work queue:
submit-wait programming model
workflow structure can be decided at run time
when a task is declared, it is assumed to be ready to run
bindings in C, python2, python3, and perl

20

describing tasks

Consider a command 'sim.exe', that takes input file A, and produces

outfile X.

what is the set of input files? what is the set of output files?

21

$ ls
sim.exe A

$./sim.exe A X

$ ls
sim.exe A X

Task Execution Model

put input
files into
sandbox

get output
files from
sandbox

command

sandbox at
worker

22

master-worker application

queue of tasks to be done

23

master process

task

worker process
result task

worker process

task

task

skeleton of a work queue application

1. create and configure a queue

2. create and configure tasks

3. submit tasks to the queue

4. wait for tasks to complete
a. if no new tasks to submit, terminate

b. otherwise go to 2
24

minimal work queue application

25

import work_queue as WQ

1. master named: 'my-master-name', run at some port at random
q = WQ.WorkQueue(name='my-master-name', port=0)

2. create a tasks that runs a command remotely, and ...
t = WQ.Task('./sim.exe A X)

...specify the name of input and output files
t.specify_input_file('sim.exe', cache=True)
t.specify_input_file('A')
t.specify_output_file('X')

3. submit the task to the queue
q.submit(t)

4. wait for all tasks to finish, 5 second timeout:
while not q.empty():
 t = q.wait(5)
 if t.result == WQ.WORK_QUEUE_RESULT_SUCCESS:
 print 'task {} finished'.format(t.id)

running work queue

26

$ python example_01.py

in some other terminal, launch a worker for that master
workers don't need PYTHONPATH set.
-M my-master-name to serve masters with that name
it could be a regexp.

--single-shot to terminate after serving one master
In general workers may serve many masters in their
lifetime, but only one at a time.

$ work_queue_worker -M my-master-name --single-shot

how do workers find the master?

27

master process
worker process

catalog server
ccl.cse.nd.edu

my name is…
I am at ...

where is a master
with name …?

work_queue_status

chosen master name

if the defaults don't work for you

29

Before launching the master, specify the range of ports available

default range is 9000-9999

at U. of Wisconsin you need:

export TCP_LOW_PORT=10000
export TCP_HIGH_PORT=10999

or: WQ.WorkQueue(name='my-master-name', port=[10000,10999])

Instead of -M:

use --port at the master to specify a port to listen
specify address of master and port at the worker

If you must, you can also run your own cctools/bin/catalog_server (-C option)

create a worker in condor

using \ to break the command in multiple lines
you can omit the \ and put everything in one line

run 3 workers in condor, each of size 1 cores, 2048 MB
of memory and 4096 MB of disk,
to serve ${USER}-my-makeflow
and which timeout after 60s of being idle.

$ condor_submit_worker --cores 1 \
--memory 2048 \
--disk 4096 \

 -M my-master-name \
--timeout 60 \
3

parameter sweep example

31

$ ls
my-cmd

my-cmd takes the value of one parameter and produces an
output file:
$./my-cmd -parameter 1 -output out.1

$ ls
my-cmd out.1

we want to try 1000 values of the parameter
$./my-cmd -parameter 2 -output out.2
$./my-cmd -parameter 3 -output out.3
$./my-cmd -parameter 4 -output out.4
…
$./my-cmd -parameter 1000 -output out.1000

parameter sweep example

32

from work_queue import WorkQueue, Task

1. create the queue
q = WorkQueue(name='my-parameter-sweep', port=0)

for i in range(1..1000):
2. create a task
t = Task('./my-cmd -output out.{1} -parameter {1}'.format(i))
t.specify_input_file('cmd', cache=True)
t.specify_output_file('out.{}'.format(i))
t.specify_tag(str(i)) # arbitrary string to identify the task

3. submit the task to the queue
q.submit(t)

4. wait for all tasks to finish, 5 second timeout:
while not q.empty():
 t = q.wait(5)
 if t:
 if t.return_status == 0:

with open('out.{}'.format(t.tag) as f:
...

dealing with long tails
on opportunistic resources

tasks
completed

33

time

almost all tasks
completed by this time

it takes way longer for a few
remaining slow task to complete

if you suspect there are workers in slow
machines

34

strategy one:
tell work queue to automatically shutdown slow workers:

q.activate_fast_abort(multiplier)

if the average completion time of all tasks is AVG
shutdown workers with average completion time
larger than multiplier*AVG

i.e: multiplier = (1 + n*STD_DEV)

if you suspect there are workers in slow
machines

35

strategy 2:
submit the same task multiple times
keep the result of the one that terminates the fastest.

t = Task(...)
t.specify_tag('some_identifying_tag')

for n in range(0..5):
 t_copy = t.clone()
 q.submit(t_copy)

while not q.empty():
 t_fastest = q.wait(5)
 if t_fastest:
 q.cancel_by_tasktag('some_identifying_tag')
 break

work queue
resource management

resources contract:
running several tasks in a worker concurrently

Worker has
available:

i cores
j MB of memory
k MB of disk

Task needs:

m cores
n MB of memory
o MB of disk

Task runs only if it fits in the currently
available worker resources.

resources contract example

Worker has
available:

8 cores
512 MB of memory
512 MB of disk

Task a:

4 cores
100 MB of memory
100 MB of disk

Tasks a and b may run in worker at the same time.
(Work could still run another 1 core task.)

Task b:

3 cores
100 MB of memory
100 MB of disk

Beware!
tasks use all worker on missing declarations

Worker has
available:

8 cores
512 MB of memory
500 TB of disk

Task a:

4 cores
100 MB of memory

Tasks a and b may NOT run in worker at the same time.
(disk resource is not specified.)

Task b:

3 cores
100 MB of memory

specifying tasks resources

40

categories are groups of tasks with the same
resource requirements

specify resources per category
q.specify_category_max_resources('my_category',
{

'cores' : 1,
'memory': 1024,
'disk' : 1014

})

assign the task to the category
t = Task('...')
t.specify_category('my_category')

managing resources

Do nothing (default if tasks don't declare cores, memory or disk):
One task per worker, task occupies the whole worker.

Honor contract (default if tasks declare resources):
Task declares cores, memory, and disk (the three of them!)
Worker runs as many concurrent tasks as they fit.
Tasks may use more resources than declared.

Monitoring and Enforcement:
Tasks fail (permanently) if they go above the resources declared.

Automatic resource labeling:
Tasks are retried with resources that maximize throughput, or minimize waste.

41

Monitoring and enforcement

Tasks fail (permanently) if they go above the resources declared.

q.enable_monitoring()

t = q.wait(...)

resources assigned to the task
.cores, .memory, .disk
t.resources_allocated.cores

resource really used
t.resources_measured.memory

which limit was broken?
if t.result == WORK_QUEUE_RESULT_RESOURCE_EXHAUSTION:
 if t.limits_exceeded.disk > -1:

... 42

Monitoring and enforcement

Workers and tasks are matched using only cores, memory, and disk.

However, limits can be set and monitored in many other resources:

q.specify_category_max_resources('my_category',
{

'cores': n, 'memory': MB, 'disk': MB,
'wall_time': us, 'cpu_time': us, 'end': us,
'swap_memory': MB,
'bytes_read': B, 'bytes_written': B,
'bytes_received': B, 'bytes_sent': B,
'bandwidth': B/s
'work_dir_num_files': n

… }

})

43

automatic resource labeling
when you don't know how big your tasks are

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

workers

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker:
Resource contention/exhaustion, reduce
throughput 44

Task-in-the-Box

workers

45

Task-in-the-Box

Workers

Allocations
inside a worker

46

Task-in-the-Box

workers

One task per
allocation

One task per
allocation

47

Task-in-the-Box

workers

Task exhausted
its allocation

One task per
allocation

48

Task-in-the-Box

workers

Retry allocating a
whole worker

One task per
allocation

49

ND CMS example

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

First-allocation that maximizes expected
throughput

(increase of %40 w.r.t. no task is retried)
Tovar, et.al
DOI:10.1109/TPDS.2017.2762310

http://dx.doi.org/10.1109/TPDS.2017.2762310

automatic resource labeling

compute retries for maximum throughput
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

compute retries for minimum waste
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MIN_WASTE)

task fails at first resource exhaustion (default)
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_FIXED)

task is retried at bigger workers when available
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MAX)

when do task retries stop?

an explicit hard limit is reached...
q.specify_category_max_resources('my_category', …)

or maximum number of retries is reached:
(default 1)
t.specify_max_retries(n)

note that you can define categories for which
no hard limit is reached, then only max retries
is relevant.

what work queue does behind the scenes

1. Some tasks are run using full workers.
2. Statistics are collected.
3. Allocations computed to maximize throughput, or minimize waste.

a. Run task using guessed size.
b. If task exhausts guessed size, keep retrying on full (bigger) workers,

or a specified specify_category_max_resources is reached.
4. When statistics become out-of-date, go to 1.

resources example

54

q.enable_monitoring()

create a category for all tasks
q.specify_category_max_resources('my-tasks', {'cores': 1, 'disk': 500})
q.specify_category_mode('my-tasks',
WQ.WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

create 30 tasks. A task creates a 1000MB file, using 10MB of memory buffer.
for i in range(0,30):
 t = WQ.Task('python task.py 1000')
 t.specify_input_file('task.py', cache = True)
 t.specify_category('my-tasks')
 t.specify_max_retries(2)
 q.submit(t)

create a task that will break the limits set
t = WQ.Task('python task.py 1000')
t.specify_input_file('task.py', cache = True)
t.specify_category('my-tasks')
t.specify_max_retries(2)
q.submit(t)

while not q.empty():
 t = q.wait(60)
 ...

resources example

55

$ source ~/cctools-tutorial/etc/uofwm-env
$ cd ~/cctools-tutorial/example_02
$ python example_02.py
…
WorkQueue on port: NNNN

in another terminal, create a worker:
(-dall -o:stdout to send debug output to stdout)
$ work_queue_worker -M ${USER}-master --disk 2000 -dall -o:stdout |
grep 'Limit'
… cctools-monitor[8837] error: Limit disk broken.

^C to kill the worker
check resources statistics
$ work_queue_status -A localhost NNNN
CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEMORY MAX-DISK
my-tasks 0 50 0 1 ~10 >500

work_queue_status -A HOST PORT
information about waiting tasks and resources

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEM MAX-DISK
my-cat-a 2 20 2 1 ~1024 ~2000
my-cat-b 0 15 0 1 >3000 ~1000
my-cat-c 0 0 0 ??? ??? ???

> At least one task that is
now waiting, failed exhausting
these much of the resource.

No info on
tasks waiting.

no fixed resource
set, and all tasks
have run under this
value

fixed resource

other
work queue
capabilities

the work queue factory

$ work_queue_factory -Tcondor \
 -M some-master-name
 --min-workers 5
 --max-workers 200
 --cores 1 --memory 4096 --disk 10000
 --tasks-per-worker 4

Factory creates workers as needed by the master:

the work queue factory -- conf file

$ work_queue_factory -Tcondor -C my-conf.json
$ cat my-conf.json
{

"master-name": "some-master-name",
"max-workers": 200,
"min-workers": 5,
"workers-per-cycle": 5,
"cores": 1,
"disk": 10000,
"memory": 4096,
"timeout": 900,
"tasks-per-worker": 4

}

to make adjustments the configuration file can be modified
once the factory is running

using condor docker universe

launch three workers to serve my-master-name
workers will run inside docker-image-name

$ condor_submit_workers
-M my-master-name \
--docker-universe docker-image-name \
3

configuring runtime logs

We recommend to always enable all the logs.

61

import work_queue as WQ

record of the states of tasks and workers
specially useful when tracking tasks resource
usage and retries
q.specify_transactions_log('my_transactions.log')

workers joined, tasks completed, etc. per time step
q.specify_log('my_stats.log')

transactions log

62

$ grep '\<TASK 1\>' example_02.tr

statistics log

Use work_queue_graph_log to visualize the statistics log:

63

$ work_queue_graph_log my_stats.log
$ display my_stats.*.svn

other ways to access statistics

64

$ work_queue_status -l HOST PORT
{"name":"cclws16.cse.nd.edu","address":"129.74.153.171","tasks_total_di
sk":0,...

current stats counts (e.g., q.stats.workers_idle)
s = q.stats
s = q.stats_by_category('my-category'))

available stats
http://ccl.cse.nd.edu/software/manuals/api/html/structwork__queue__stats.html

http://ccl.cse.nd.edu/software/manuals/api/html/structwork__queue__stats.html

all workers can talk to all masters, unless...

put a passphrase in a text file, say my.password.txt

tell master to use the password:
q.specify_password('my.password.txt')

tell workers to use the password:
$ work_queue_worker … --password my.password.txt

other miscellaneous work queue calls

66

blacklist a worker
q.blacklist(hostname)

remove cached file from workers
q.invalidate_cache_file(filename)

remote name of files
q.specify_{in|out}put_file(name-at-master, name-at-worker,...)

if directory name, send/receive recursively
t.specify_directory('some/dir',

recursive=True,
type=work_queue.WORK_QUEUE_INPUT)
or type=work_queue.WORK_QUEUE_OUTPUT)

produce monitoring snapshots at certain events
(e.g., a regexp in a log appears, or a file is created/deleted)
t.specify_snapshot_file('snapshot-spec.json')

resources per task
t.specify_cores(n)
t.specify_memory(n)
t.specify_disk(n)

Work Queue API

http://ccl.cse.nd.edu/software/manuals/api/python

http://ccl.cse.nd.edu/software/manuals/api/perl

http://ccl.cse.nd.edu/software/manuals/api/C

67

http://ccl.cse.nd.edu/software/manuals/api/python
http://ccl.cse.nd.edu/software/manuals/api/perl
http://ccl.cse.nd.edu/software/manuals/api/C

setting up cctools

getting the examples

69

$ ssh submit-1.chtc.wisc.edu
$ cd ~
$ git clone \
https://github.com/cooperative-computing-lab/cctools-tutorial

setting up cctools at U of Wisconsin M.

70

in your ~/.bashrc file:
cctools_home=/usr/local/cctools
PATH=${cctools_home}/bin:${PATH}
PYTHONPATH=${cctools_home}/lib/python2.7/site-packages:${PYTHONPATH}
PERL5LIB=${cctools_home}/lib/perl5/site_perl/5.16.3:${PERL5LIB}

TCP_LOW_PORT=10000
TCP_HIGHT_PORT=10999
export PATH PYTHONPATH PERL5LIB TCP_LOW_PORT TCP_HIGH_PORT

installing up cctools anywhere else

71

$ wget
http://ccl.cse.nd.edu/software/files/cctools-7.0.13-x86_64
-centos7.tar.gz

decompress cctools
$ tar -xf cctools-*-redhat7.tar.gz

move to canonical destination
$ mv cctools-*-redhat7 cctools

setup environment (you may want to add these
lines to the end of .bashrc)
$ export PATH=:~/cctools/bin:${PATH}
… etc… for PYTHONPATH and others

http://ccl.cse.nd.edu/software/files/cctools-7.0.13-x86_64-centos7.tar.gz
http://ccl.cse.nd.edu/software/files/cctools-7.0.13-x86_64-centos7.tar.gz

from source

72

$ $ wget
http://ccl.cse.nd.edu/software/files/cctools-7.0.13-source
.tar.gz

decompress cctools
$ tar -xf cctools-*-src.tar.gz

configure and install (swig dependency)
$ cd cctools-*-src
$./configure --with-swig-path=/path/to/swig
$ make
$ make install

http://ccl.cse.nd.edu/software/files/cctools-7.0.13-x86_64-centos7.tar.gz
http://ccl.cse.nd.edu/software/files/cctools-7.0.13-x86_64-centos7.tar.gz

test your setup

73

if the following command fails, did you set PATH?
$ work_queue_worker --version
work_queue_worker version 7.0.13 FINAL from source (released 2019-05-14 09:42:11 -0400)
 Built by btovar@camd04.crc.nd.edu on 2019-05-14 09:42:11 -0400
 System: Linux camd04.crc.nd.edu 3.10.0-957.el7.x86_64 #1 SMP Thu Oct 4 20:48:51 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux
 Configuration: --strict --build-label from source --build-date --tcp-low-port 9000
--sge-parameter -pe smp $cores --strict --with-cvmfs-path /opt/libcvmfs --with-uuid-path /opt/uuid
--prefix /var/condor/execute/dir_2578/cctools-fb72a868-x86_64-centos7

thanks!

questions:
btovar@nd.edu

forum:
https://ccl.cse.nd.edu/community/forum

manuals:
http://ccl.cse.nd.edu/software

repositories:
https://github.com/cooperative-computing-lab/cctools
https://github.com/cooperative-computing-lab/makeflow-examples

This work was supported by:

NSF grant ACI 1642609
"SI2-SSE: Scaling up Science on

Cyberinfrastructure with the Cooperative
Computing Tools"

DOE grant ER26110
"dV/dt - Accelerating the Rate of Progress

Towards Extreme Scale Collaborative
Science"

mailto:btovar@nd.edu
https://ccl.cse.nd.edu/community/forum
http://ccl.cse.nd.edu/software
https://github.com/cooperative-computing-lab/cctools
https://github.com/cooperative-computing-lab/makeflow-examples

extra slides

Stand-alone resource monitoring

resource_monitor -L"cores: 4" -L"memory: 4096" -- cmd

(does not work as well on static executables that fork)

http://ccl.cse.nd.edu/software/manuals/resource_monitor.html

http://ccl.cse.nd.edu/software/manuals/resource_monitor.html

configuring tasks

77

from work_queue import Task

t = Task('shell command to be executed')

t.specify_input_file('path/to/some/file')

files can be cached at workers
t.specify_input_file('path/to/other/file', cache=True)

same for output files
t.specify_output_file('path/to/output/file')
t.specify_output_file('path/to/other/output', cache=True)

if directory name, send/receive recursively
t.specify_directory('some/dir',

recursive=True,
type=work_queue.WORK_QUEUE_INPUT)
or type=work_queue.WORK_QUEUE_OUTPUT)

