SciTokens and Credential
Management

Zach Miller
Jason Patton
HTCondor Week 2019

This material is based upon work supported by the National Science Foundation under Grant
No. 1738962. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

S,

* The SciTokens project, started July 2017, aims to:

* Introduce a capabilities-based authorization infrastructure
for distributed scientific computing,

* Provide a reference platform, combining ClLogon, HTCondor,
CVMFS, and XRootD, and

* Implement specific use cases to help our science
stakeholders (LIGO and LSST) better achieve their scientific
aims.

S,

At the core of today’s grid security infrastructure is the
concept of identity and impersonation.

« A grid certificate provides you with a globally-recognized
identification.

» The grid proxy allows a third party to impersonate you, (ideally)
on your behalf.

« The remote service maps your identity to some set of locally-
defined authorizations.

* We believe this approach is fundamentally wrong because
It exposes too much global state: identity and policy
should be kept locally!

S,

* We want to change the infrastructure to focus on capabllities!

* The tokens passed to the remote service describe what
authorizations the bearer has.

» For traceability purposes, there may be an identifier that
allows tracing of the token bearer back to an identity.

 |dentifier I= identity. It may be privacy-preserving, requirin
the issuer (VO) to%rovideyhelppin ma%pping_ i

« Example: “The bearer of this piece of paper is entitled to write
into /data/zmiller”.

S,

* If GSI took over the world, an attacker could use a stolen
grid proxy to make withdrawals from your bank account.

» With capabilities, a stolen token only gets you access to a
specific authorization (“stageout to /data/zmiller at
Wisconsin®).

» SciTokens is following the principle of least privilege for
distributed scientific computing.

* Integrating an
OAuth2 client on the
HTCondor submit

host

* Enhancing
HTCondor to
manage token
refresh and delivery
to jobs

* Enhancing data
services (e.g.
Xrootd) to allow
read/writes usin
tokens instead o
grid proxies

0 = token

User

Submit Execute Data
Scheduler —> Launcher Data
Server
+ token é
Token Token
Job
Manager Server

Q = refresh tokens Q = access tokens

» Policy DB

Token Server

Identity Provider

Data Access

M

(XRootD)

Job Submission Job Execution

B condor_startd
condor_schedd
condor_credd
credmon
A

User

S,

* Runs under the condor_master like all other HTCondor
daemons

 Manages credentials stored in a special “credential
directory” with restricted permissions. Regular users
cannot read or write within this directory, but the CredD
can.

S,

* Has two "modes”
» Kerberos mode, which | talked about last year
« OAuth mode, which | am talking about now

 Currently the two modes cannot coexist due to different
conventions for layouts of the credential directory

* Future work includes merging these modes so both can
be used at the same time

S,

* In the old “Kerberos Mode”, the CredD would only hold
one credential per user.

* The CredD in "OAuth Mode” can now hold multiple
credentials per user

* I'm skipping the internals for this talk and focusing more
on the higher-level concepts, but please come talk to me if
you are curious or have questions.

10

S,

» Okay... back to OAuth mode!

* The CredD in "OAuth Mode” can now hold multiple
credentials per user

* These can be tokens from different services:
» scitokens
 box.com

* There can be different scopes (permissions) for the same
service:

 scitokens _uw_read zmiller
 scitokens uw_write jpatton

11

S,

* The user defines the tokens they need and the names
(handles) and scopes in their submit file

» Jason will describe and demo that later...
« wOOt! DEMO! ©

12

S,

* The CredD itself deals with the secure storage and
retrieval of the the credentials

* |t does NOT know or understand the contents of the
credentials — they are opaque to the CredD

* Another component is in charge of understanding and
manipulating OAuth tokens: the CredMon

13

S,

* Responsible for obtaining tokens by talking to the various
services

* Monitors the existing tokens and knows how to refresh
them

* Receives signals from the CredD when there is potentially
new work for it do do

14

Q = refresh tokens Q = access tokens

» Policy DB

Token Server

Identity Provider

Data Access

M

(XRootD)

Job Submission Job Execution

B condor_startd
condor_schedd
condor_credd
credmon
A

User

« User specifies in their submit file what credentials they
need.

* Run condor_submit:

Hello, zmiller.
Please wvisit:

https://baphomet.cs.wisc.edu/key/f40740d...34a0eebacl

» User does so and follows directions
« That's Jason’s demo and I'm not going to steal his thunder!

16

S,

« User specifies in their submit file what credentials they
need.

* Run condor_submit:

Submitting job(s) .
1 job(s) submitted to cluster 39033.

 This time it worked because condor_submit checked with
the CredD and all the tokens were present. Thus, the job
can now run!

17

S,

» Job matches and starts running

« After the sandbox directory is created, but BEFORE any
files are transferred, the condor_starter calls back to the
condor _shadow to fetch tokens

* Only the tokens for THAT job are sent

* Only the ACCESS tokens are sent

« HTCondor ensures the communication channel is
encrypted, or it refuses to send the tokens.

18

S,

* The access tokens are placed into the job sandbox in the
.condor creds directory

* Environment variable within the job CONDOR CREDS
points to the full path for that directory

» Tokens are refreshed periodically while job continues
running

» Tokens are cleaned up automatically when job exits since
they are in the job sandbox

my prog —--token=$ CONDOR CREDS/scitokens.use

19

S,

* Get a certificate for their submit server

« Configure box.com
* You need a developer account
« Create a new app

« Register your submit server
« Configure HTCondor

 This will appear in more and complete detail on the
HTCondor Wiki:

20

S,

* One fairly straightforward way to get a certificate is by
using the Let's Encrypt service and certbot

K Let’s Encrypt ﬁ e]_‘tbOt

Automatically enable HTTPS nyou wb w hEFF Certbot
deploying Let's Encrypt ¢ f

21

 Create a custom box.com app that uses OAuth

&# box Developers

0§ My Apps

&, SDKs
[F] API Docs

&> Support

=5 My Files

{3 Settings

My Apps

@

Create New App

Custom App

Build a standalone app with Box’s
content services, such as
managing and rendering files and
enabling end-user collaboration.

For developers using Box’s
content services without requiring

Box user accounts.

Standard OAuth 2.0 (User Authentication)
Requires Box users to log in with a username and password to authorize your app to

access content in their account.

¢» box Developers @ v

* Register
Su bm |t o8 My Apps Configuration

Configure the authentication and permissions for your app to begin using the Box APIls. Check out

m a Ch I n e our Getting Started Guide for a walkthrough of these settings.

3 General
ez Configuration

& Webhooks

@ Integrations OAuth 2.0 Credentials Client ID

@= App Gallery Credentials for using OAuth 2.0 as your wluxtsxho2c4vabn3xs6n81lh0c0fznwu copYy
Authentication type.

Client Secret

% SDKs 000000000000 00000000000000000000 COPY
[F] API Docs
& Support Reset

OAuth 2.0 Redirect URI Redirect URI

The redirect URI is the URL within your https:/baphomet.cs.wisc.edu/return/box

application that will receive OAuth 2.0
credentials.

* Example configuration for the submit
machine to interface with box.com

Box.com client

BOX CLIENT ID = wluxtsxho2c4vabn3xs6n8lh0cOfznwu
BOX CLIENT SECRET FILE = /etc/condor/.secrets/box
BOX RETURN URL SUFFIX = /return/box

BOX AUTHORIZATION URL =

https://account.box.com/api/ocauth2/authorize

BOX TOKEN URL = https://api.box.com/ocauth2/token
BOX USER URL = https://api.box.com/2.0/users/me

24

* Many details were glossed over

25

EEEEEEEEE

CCCCCCCCC

HTCoNnddr

SciTokens Credmon and Job Submission

« Two parts:
« Credential Monitor
« Web app (Python Flask framework)

« Currently supports:

* OAuth2-style tokens
(including SciTokens)

» Locally issued SciTokens
(i.e. issue-on-submit)
« Separate package from HTCondor

* Near future: yum install
python-scitokens-credmon

SciTokens Credmon

Credential
Monitor

Web app

Web app
Gathers initial tokens

1. Reads "key” file with user’s and
OAuth2 providers’ info.

[jcpatton@scitokens-dev box_examplel$ condor_submit single_box.submit
Submitting job(s)

Hello, jcpatton.

Please visit: https://scitokens-dev.chtc.wisc.edl/key/@3b075c528bc5ed

®® @ credMon x +

& > C {Y & https//scitok.. @ ¥ Incognito @ H

HTCondor Credential Manager —

Service
Providers

Logging into the below service providers allows
HTCondor to manage the credentials for those
providers. HTCondor can then read & write into the
resources provided by these service providers.

box Login

[] [Customer Log In X +

& > C) @ httpsi//accou.. ©r Yr Incognito & i

Web app =]
Gathers initial tokens Log n to grant access to Box

4 jcpatton@wisc.edu

n
a

Authorize

1. Reads “key’ file with user’s and)
OAuth2 providers’ info. S— -

.:v:.
By granting HTCondor Scheduler at scitokens-dev. v al ~
are agreeing to Box's Terms of Service and Privacy Polid '\ J

2 2 S e n d S u Se r to OAu th 2 p rov i d e rS With access to your jcpatton@wisc.edu Box

account, HTCondor Scheduler at scitokens-

for authentication and dev.chtc.wisc.edu can:

« Read and write all files and folders stored in

authorization.

Grant access to Box

Deny access to Box

Web app
Gathers initial tokens

1. Reads "key” file with user’s and
OAuth2 providers’ info.

2. Sends user to OAuth2 providers
for authentication and
authorization.

3. Stores refresh and access
tokens in credential directory.

| HTCondor Credential Manager —

Service
Providers

You have logged in to all service providers indicated by
your job. You may close this window and resubmit your
HTCondor job (if necessary).

box Login

Logged in as: jcpatton@wisc.edu

[jcpatton@scitokens-dev box_examplel$ \

> sudo 1ls $(condor_config_val SEC_CREDENTIAL_DIRECTORY)/jcpatton

box.meta box.top box.use

[jcpatton@scitokens-dev box_examplel$ \

Credential Monitor
Keeps active tokens refreshed [

1. Scans credential directory for
valid refresh tokens.

Credential Monitor
Keeps active tokens refreshed

1. Scans credential directory for
valid refresh tokens.

2. Refreshes corresponding
access tokens.

[jcpatton@scitokens-dev box_examplel$ \
> sudo 1ls $(condor_config val SEC_CREDENTIAL_DIRECTORY)/jcpatton

box.meta bdx.top box.use

Credential Monitor
Keeps active tokens refreshed

1. Scans credential directory for
valid refresh tokens.

2. Refreshes corresponding
access tokens.

3. Writes CREDMON COMPLETE
(watched by CredD).

[jcpatton@scitokens-dev box_examplel$ \
> sudo 1ls $(condor_config_val SEC_CREDENTIAL_DIRECTORY)

& CREDMON_COMPLETE Jjcpatton pid README.credentials wsgi_session_key

P2 ded) e e i 2 6

 REQUIRED list of requested OAuth2 service providers, which must
match (case-insensitive) the provider names in the HTCondor config.

Minimal example - Single provider with no required scopes or resources:

e ol e - lan 0 4y b 11
arguments = htcondor/testfile.txt
1 = o el e - o«
queue
$ CONDOR CREDS/box.use

* use oauth services = <servicel, servicez2, ..>

- REQUIRED list of requested OAuth2 service providers, which
must match (case-insensitive) the provider names in the
HTCondor config.

* <SERVICE> oauth permissions|[<HANDLE>] = <scopel, scope2, ..>

- List of requested token scopes. OPTIONAL IF the OAuth2
service provider does not require a scope. The user can provide
a handle to give a unique name to the token.

e <SERVICE> oauth resource|[<HANDLE>] = <resource>

» The resource that the token should request permissions for.
OPTIONAL IF the OAuth2 provider does not require a resource
(a.k.a. audience) to be defined.

Note that service providers are defined by the admin in the
config and handles are user-defined (optional).

Multiple scopes and resources:

executable = compute stats

arguments =

—-—out=https://jpatton.wisc.edu/home/jpatton/analysis.txt

use oauth services = uwtokens

uwtokens ocauth permissions read =

uwtokens ocauth resource read =

uwtokens ocauth permissions write =

uwtokens oauth resource write =

queue

--in=https://mironlab.wisc.edu/shared/rawdata.zip

read:/shared

https://mironlab.wisc.edu/

write:/home/jpatton
https://jpatton.wisc.edu/

$ CONDOR CREDS/uwtokens read.use
$ CONDOR _CREDS/uwtokens write.use

HI

CENTER FOR

HIGH THROUGHPUT
COMPUTING

HTCoNnddr

Thank You!

jpatton@cs.wisc.edu
zmiller@cs.wisc.edu

