
SciTokens and Credential 
Management

Zach Miller zmiller@cs.wisc.edu
Jason Patton jpatton@cs.wisc.edu

HTCondor Week 2019

This material is based upon work supported by the National Science Foundation under Grant 
No. 1738962. Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.



SciTokens Project

• The SciTokens project, started July 2017, aims to:

• Introduce a capabilities-based authorization infrastructure
for distributed scientific computing,

• Provide a reference platform, combining CILogon, HTCondor, 
CVMFS, and XRootD, and

• Implement specific use cases to help our science 
stakeholders (LIGO and LSST) better achieve their scientific 
aims.



Identity-based Authorization

• At the core of today’s grid security infrastructure is the 
concept of identity and impersonation.

• A grid certificate provides you with a globally-recognized 
identification.

• The grid proxy allows a third party to impersonate you, (ideally) 
on your behalf.

• The remote service maps your identity to some set of locally-
defined authorizations.

• We believe this approach is fundamentally wrong because 
it exposes too much global state: identity and policy 
should be kept locally!



Capability-based Authorization

• We want to change the infrastructure to focus on capabilities!

• The tokens passed to the remote service describe what 
authorizations the bearer has.

• For traceability purposes, there may be an identifier that 
allows tracing of the token bearer back to an identity.

• Identifier != identity.  It may be privacy-preserving, requiring 
the issuer (VO) to provide help in mapping.

• Example: “The bearer of this piece of paper is entitled to write 
into /data/zmiller".



Capabilities versus Impersonation

• If GSI took over the world, an attacker could use a stolen 
grid proxy to make withdrawals from your bank account.

• With capabilities, a stolen token only gets you access to a 
specific authorization (“stageout to /data/zmiller at 
Wisconsin”).

• SciTokens is following the principle of least privilege for 
distributed scientific computing.



SciTokens Model

• Integrating an 
OAuth2 client on the 
HTCondor submit 
host

• Enhancing 
HTCondor to 
manage token 
refresh and delivery 
to jobs

• Enhancing data 
services (e.g. 
Xrootd) to allow 
read/writes using 
tokens instead of 
grid proxies

Submit Execute Data

Scheduler

Token
Manager

T token

Launcher

Job

T

T

Data
Server

Token
Server

T

T

User

=	tokenT



Architecture

Job	Submission Job	Execution

Data	Access

condor_submit

condor_schedd

condor_credd
credmon

condor_shadow

condor_startd

condor_starter

User’s	job

Token	Server

Data	Server

(XRootD)

User

Policy	DB
=	refresh	tokens

A

A A

R

R A =	access	tokens

A

Identity	Provider



• Runs under the condor_master like all other HTCondor
daemons

• Manages credentials stored in a special “credential 
directory” with restricted permissions.  Regular users 
cannot read or write within this directory, but the CredD
can.

CredD

8



• Has two “modes”
• Kerberos mode, which I talked about last year
• OAuth mode, which I am talking about now

• Currently the two modes cannot coexist due to different 
conventions for layouts of the credential directory

• Future work includes merging these modes so both can 
be used at the same time

CredD

9



• In the old “Kerberos Mode”, the CredD would only hold 
one credential per user.

• The CredD in “OAuth Mode” can now hold multiple 
credentials per user

• I’m skipping the internals for this talk and focusing more 
on the higher-level concepts, but please come talk to me if 
you are curious or have questions.

CredD

10



• Okay… back to OAuth mode!
• The CredD in “OAuth Mode” can now hold multiple 

credentials per user
• These can be tokens from different services:

• scitokens
• box.com

• There can be different scopes (permissions) for the same 
service:

• scitokens_uw_read_zmiller
• scitokens_uw_write_jpatton

CredD

11



• The user defines the tokens they need and the names 
(handles) and scopes in their submit file

• Jason will describe and demo that later…
• w00t! DEMO! J

CredD

12



• The CredD itself deals with the secure storage and 
retrieval of the the credentials

• It does NOT know or understand the contents of the 
credentials – they are opaque to the CredD

• Another component is in charge of understanding and 
manipulating OAuth tokens: the CredMon

CredD

13



• Responsible for obtaining tokens by talking to the various 
services

• Monitors the existing tokens and knows how to refresh 
them

• Receives signals from the CredD when there is potentially 
new work for it do do

CredMon

14



Architecture

Job	Submission Job	Execution

Data	Access

condor_submit

condor_schedd

condor_credd
credmon

condor_shadow

condor_startd

condor_starter

User’s	job

Token	Server

Data	Server

(XRootD)

User

Policy	DB
=	refresh	tokens

A

A A

R

R A =	access	tokens

A

Identity	Provider



• User specifies in their submit file what credentials they 
need.

• Run condor_submit:

Hello, zmiller.

Please visit:

https://baphomet.cs.wisc.edu/key/f40740d...34a0eebac1

• User does so and follows directions
• That’s Jason’s demo and I’m not going to steal his thunder!

Credential Flow

16



• User specifies in their submit file what credentials they 
need.

• Run condor_submit:

Submitting job(s).

1 job(s) submitted to cluster 39033.

• This time it worked because condor_submit checked with 
the CredD and all the tokens were present.  Thus, the job 
can now run!

Credential Flow

17



• Job matches and starts running
• After the sandbox directory is created, but BEFORE any 

files are transferred, the condor_starter calls back to the 
condor_shadow to fetch tokens

• Only the tokens for THAT job are sent
• Only the ACCESS tokens are sent
• HTCondor ensures the communication channel is 

encrypted, or it refuses to send the tokens.

Credential Flow

18



• The access tokens are placed into the job sandbox in the 
.condor_creds directory

• Environment variable within the job _CONDOR_CREDS
points to the full path for that directory

• Tokens are refreshed periodically while job continues 
running

• Tokens are cleaned up automatically when job exits since 
they are in the job sandbox

my_prog --token=$_CONDOR_CREDS/scitokens.use

Credential Flow

19



• Get a certificate for their submit server
• Configure box.com

• You need a developer account
• Create a new app

• Register your submit server
• Configure HTCondor
• This will appear in more and complete detail on the 

HTCondor Wiki:
• https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki

Configuration

20



• One fairly straightforward way to get a certificate is by 
using the Let’s Encrypt service and certbot

• https://letsencrypt.org/

Configuration

21



Configuration

• Create a custom box.com app that uses OAuth



Configuration

• Register 
submit 
machine



• Example configuration for the submit 
machine to interface with box.com

# Box.com client

BOX_CLIENT_ID = wluxtsxho2c4vabn3xs6n8lh0c0fznwu

BOX_CLIENT_SECRET_FILE = /etc/condor/.secrets/box

BOX_RETURN_URL_SUFFIX = /return/box

BOX_AUTHORIZATION_URL =

https://account.box.com/api/oauth2/authorize

BOX_TOKEN_URL = https://api.box.com/oauth2/token

BOX_USER_URL = https://api.box.com/2.0/users/me

Configuration

24



• Many details were glossed over

Configuration

25



SciTokens Credmon and Job Submission



SciTokens Credmon

• Two parts:
• Credential Monitor
• Web app (Python Flask framework)

• Currently supports:
• OAuth2-style tokens 

(including SciTokens)
• Locally issued SciTokens

(i.e. issue-on-submit)
• Separate package from HTCondor

• Near future: yum install 
python-scitokens-credmon

SciTokens Credmon

Credential 
Monitor

Web app



SciTokens Credmon – OAuth2 Support

Web app
Gathers initial tokens

1. Reads ”key” file with user’s and 
OAuth2 providers’ info.



SciTokens Credmon – OAuth2 Support

Web app
Gathers initial tokens

1. Reads ”key” file with user’s and 
OAuth2 providers’ info.

2. Sends user to OAuth2 providers 
for authentication and 
authorization.



SciTokens Credmon – OAuth2 Support

Web app
Gathers initial tokens

1. Reads ”key” file with user’s and 
OAuth2 providers’ info.

2. Sends user to OAuth2 providers 
for authentication and 
authorization.

3. Stores refresh and access 
tokens in credential directory.



SciTokens Credmon – OAuth2 Support

Credential Monitor
Keeps active tokens refreshed

1. Scans credential directory for 
valid refresh tokens.



SciTokens Credmon – OAuth2 Support

Credential Monitor
Keeps active tokens refreshed

1. Scans credential directory for 
valid refresh tokens.

2. Refreshes corresponding 
access tokens.



SciTokens Credmon – OAuth2 Support

Credential Monitor
Keeps active tokens refreshed

1. Scans credential directory for 
valid refresh tokens.

2. Refreshes corresponding 
access tokens.

3. Writes CREDMON_COMPLETE 
(watched by CredD).



Submitting OAuth2 Jobs

34



OAuth2 Submit Syntax
• use_oauth_services = <service1, service2, …>

• REQUIRED list of requested OAuth2 service providers, which must 
match (case-insensitive) the provider names in the HTCondor config.

Minimal example - Single provider with no required scopes or resources:

executable = transfer_my_box_file.py

arguments = htcondor/testfile.txt

use_oauth_services = box

queue
$_CONDOR_CREDS/box.use



OAuth2 Submit Syntax
• use_oauth_services = <service1, service2, …>

• REQUIRED list of requested OAuth2 service providers, which 
must match (case-insensitive) the provider names in the 
HTCondor config.

• <SERVICE>_oauth_permissions[_<HANDLE>] = <scope1, scope2, …>
• List of requested token scopes. OPTIONAL IF the OAuth2 

service provider does not require a scope. The user can provide 
a handle to give a unique name to the token.

• <SERVICE>_oauth_resource[_<HANDLE>] = <resource>
• The resource that the token should request permissions for. 

OPTIONAL IF the OAuth2 provider does not require a resource 
(a.k.a. audience) to be defined.

Note that service providers are defined by the admin in the 
config and handles are user-defined (optional).



Multiple scopes and resources:

OAuth2 Submit Example

executable = compute_stats

arguments = --in=https://mironlab.wisc.edu/shared/rawdata.zip

--out=https://jpatton.wisc.edu/home/jpatton/analysis.txt

use_oauth_services = uwtokens

uwtokens_oauth_permissions_read = read:/shared

uwtokens_oauth_resource_read = https://mironlab.wisc.edu/

uwtokens_oauth_permissions_write = write:/home/jpatton

uwtokens_oauth_resource_write = https://jpatton.wisc.edu/

queue $_CONDOR_CREDS/uwtokens_read.use
$_CONDOR_CREDS/uwtokens_write.use



Live Demo

38



Thank You!

jpatton@cs.wisc.edu
zmiller@cs.wisc.edu


