

HTCondor Solutions for Several Scenarios at IHEP

Zou Jiaheng On behalf of Scheduling Group at IHEP

HTCondor Week 2019

Outline

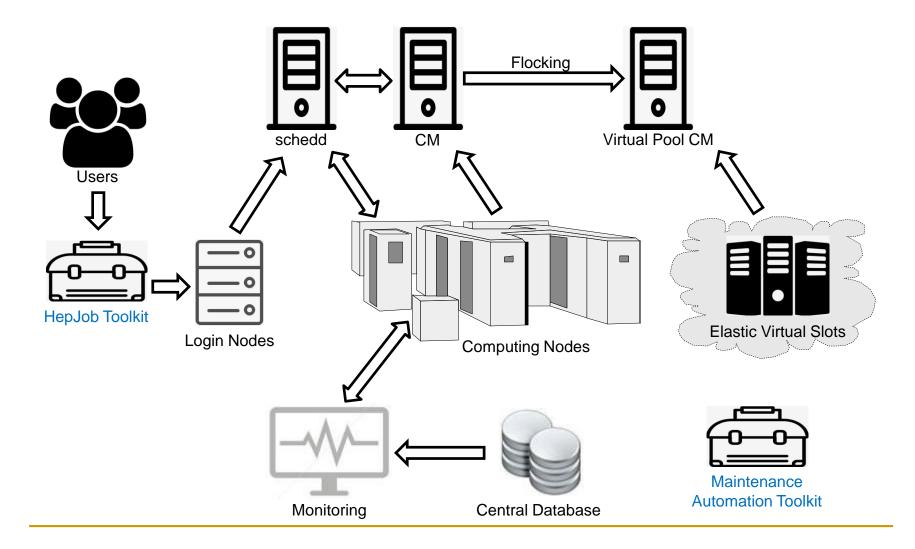
Brief Introduction

HTCondor Solutions at IHEP

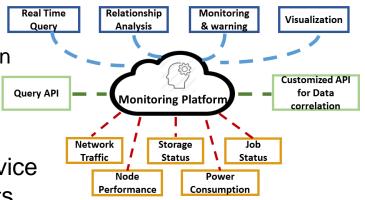
- Resource management
- Job management
- Abnormality management

Summary

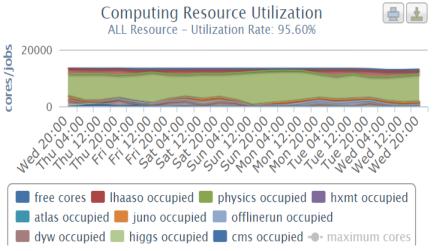
Computing at IHEP


- HEP Experiments run by IHEP
 - Collider: BESIII, CEPC ...
 - Neutrino: Dayabay, JUNO
 - Cosmic ray: HXMT, LHAASO ...
- Local Computing Cluster
 - A HTC Cluster with HTCondor
 - Single core slots, serial jobs
 - >14,000 CPU cores, shared file system
 - 2000+ users from 10+ experiments
 - 300+ active users, 100,000+ jobs/day
 - A HPC Cluster with SLURM
 - MPI and GPU jobs

Overview of HTCondor Cluster at IHEP



9


Toolkits

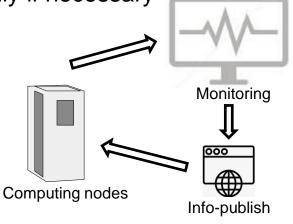
- HepJob Toolkit
 - Based on the Python API of HTCondor
 - A user tool for job submission, querying and deletion
 - Apply customized and mandatory job ClassAD attributes at the backend
- Maintenance Automation Toolkit (MAT)
 - Based on a new monitoring system at IHEP
 - Real-time acquisition, analysis and correlation of multidimensional information
 - Provide APIs for statistical analysis and automatic system alarms
 - Automatically update the HTCondor service configuration based on monitoring results

HTCondor Resource Sharing at IHEP

- 14 different experiments \rightarrow 14 user groups
- Resources are funded and owned by different groups
- There are always some busy groups and some free groups
- Everyone can derive benefits from resource sharing
- The overall resource utilization rate keeps more than 95%
- Resource sharing policy at IHEP
 - All slots are shared to everyone
 - Group quota is set according to their contribution for fairness
 - Quota surplus is enabled to improve the overall resource utilization

Brief Introduction

HTCondor Solutions at IHEP


- Resource management
- Job management
- Abnormality management

Summary

Resource Management (I)

- The central database, monitoring and info-publish system
 - All nodes with various attributes are recorded to the central database
 - Healthy detection to each node is collected by the monitoring system
 - Detection results are published via HTTP protocol
- A crontab task is running on each computing node
 - Retrieve its own health state from the info-publish system periodically
 - Update and reconfigure the startd automatically if necessary
- Automatic management of startd
 - Stop the service when there is critical error
 - Stop accepting jobs which are related to the error happened to the node
 - Recover the service when the error is fixed

Resource Management (II)

- Add a new node into the cluster
 - Add a record in the central database
 - Node state is collected and published
 - The node retrieves its own state and configures its HTCondor service automatically
- The evolution of the monitoring and info-publish system (in progress)
 - Lots of connections from the crontab tasks to the info-publish system
 - □ In general, error does not happen frequently
 - Server side: push error/recovery messages to work node
 - Work node: a daemon listens on the message and reconfigures the node
 - Less connections and less time delay than the crontab tasks

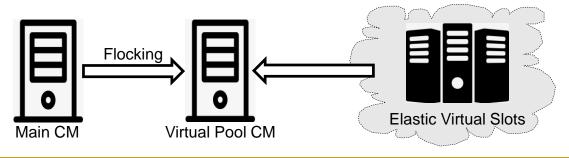
Special Requirements

- There are always special requirements from users
 - Some applications need bigger memory
 - Some users want exclusive nodes for software testing or something
 - And ... etc.
- Manual configuration on a selected node
 - HTCondor configure files are loaded in alphabetical order
 - We can override any MAT configuration in a last loaded configure file
 - No need to stop the MAT features, and no side effect
 - But we might forget what we did to which node
- We are considering the integration with MAT in the future
 - Records in the central database will never be forgotten

Job Walltime Limitation (I)

Motivation

- Job preempting is disabled, because most of our jobs can't be recovered
- A large number of long jobs is harmful to fairness
- We encourage users to set their jobs in proper grain size
- Configuration and effects
 - □ In the job wrapper, walltime is limited to 100 hours by default
 - □ In fact, the average job walltime is ~ 2 hours
 - ~ 100 jobs/slots are finished/freed in each minute
 - Higher priority users' job can be scheduled without long time delay


Job Walltime Limitation (II)

- In some cases, a long job can't be divided into shorter jobs
- IHEP HTCondor cluster
 - Users can submit long jobs with the HepJob toolkit
 - The number of long jobs for each user is limited to 10 in HepJob
 - Job walltime limitation is set in wrapper according to the walltime attribute set by the HepJob toolkit
- USTC HTCondor cluster a remote site that managed by us
 - □ A small (~2000 CPU slots) cluster with fewer users
 - No complex group competing, no HepJob
 - A "long" group for long jobs
 - Set a quota to the "long" group without surplus
 - Normal jobs can occupy more slots when there are not so many long jobs

Job Flocking to the Virtual Pool

- The virtual pool consists of a elastic number of slots running on virtual machines
 - Can be used for exclusive computing tasks
 - Slots might be added or removed more dynamically
- Keep the architecture be simple
 - 1 schedd and 2 CM: no schedd is associated with the virtual pool
 - No jobs can be submitted to the virtual pool directly
 - Only selected jobs are flocked to the virtual pool

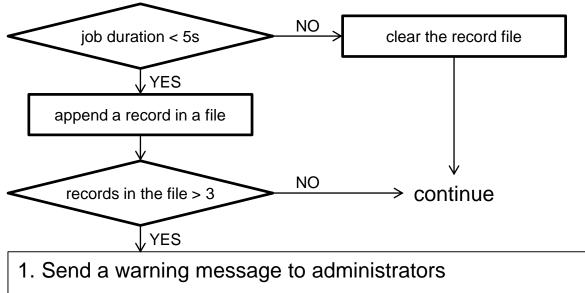
Abnormal User Behavior

- HTCondor trusts users
- Once we found a user set the job owner to someone else
 - Steal job slots from others, the fairness is broken
 - We stopped the user's account as punishment \sim a sad story
- Then we try to prevent such behaviors in advance
 - In HepJob toolkit
 - Set right owner and accounting group when jobs are submitted
 - Warn the submitter and stop submission when there is any incorrect settings
 - In Job Wrapper
 - Double check to the job owner and accounting group
 - Stop illegal user jobs
 - This is necessary some users prefer native commands rather than HepJob

Abnormal Jobs

- There are several cases of abnormal jobs, for example
 - Run MPI or multithreading jobs in single core slots
 - Write too much data to the local disk and crash the system
- Such information can be collected and analyzed by MAT
 - Kill abnormal jobs automatically
 - Warn the user and administrator in time
 - Keep computing nodes be robust
- More abnormal conditions will be collected and integrated with MAT

Black Hole Handling (I)


- A node can be a black hole in some conditions, such as a shared file system error
 - Jobs are terminated in a few seconds, and the slots are freed rapidly
 - A large number of jobs are scheduled to the error node and terminated in a very short period
 - A terrible problem to most sites ?
- Black hole detection and handling
 - The Maintenance Automation Toolkit (MAT)
 - Black hole can be detected by the monitoring system
 - The startd can be reconfigured according to the info-publish result
 - But, there is a delay of several minutes ~ thousands of jobs can be ruined
 - We always try to find a faster solution

Black Hole Handling (II)

- The Job Wrapper script of HTCondor
 - All the job information is known in the wrapper
 - Additional checks can be added after users' real jobs

- 2. Do not free the slot until it is reconfigured by MAT or handled by admin
- This will be deployed at IHEP and the final effect is going to be verified

Summary

- We reach a very high resource utilization rate with HTCondor
- Many efforts are made to improve our computing service
 - Automatic maintenance
 - Detection and handling of abnormalities and system errors in time