
Python binding based
monitoring at CMS

Diego Davila, on behalf of the Submission
Infrastructure team of CMS

May, 2019

Outline

2

● The CMS experiment
● The CMS Global pool
● Monitoring the pools
● Pretty plots
● Conclusions

The CMS experiment

3

● CMS - Compact Muon Solenoid
● One of the main experiments in the LHC (Large Hadron Collider)
● Collaboration of more than 5k people

The CMS experiment

4

The CMS experiment

5

Particles are injected into the LHC
and accelerated using magnets

The CMS experiment

6

Bunches of particles circle around
the LHC in opposite directions on
separated tubes

The CMS experiment

7

After reaching certain amount of
speed (close to the speed of light),
the particles are positioned so that
they will crash to each other inside
the different detectors

The CMS experiment

8

Collisions are recorded, using the
many sensors inside each
detector

This produces a lot of data to be
analyzed

The CMS experiment

9

The institutes within the
collaboration provide computing
resources to store and analyze the
data

10

Central
Manager

Site A Site B

Schedd

GlideinWMS
Factory

GlideinWMS
Frontend

Startd
Glidein

Site C

The CMS Global pool

Not only 1 but 5 pools

11

Global pool CERN pool Volunteer, ITB and ITBDev

 5 Central Managers
 7 Negotiators
 76 Schedds
134k Slots
300k Cores

What we wanted

12

● A monitor to watch them all
● Be able to reuse the monitoring infrastructure provided by CERN

○ short and long term storage
○ auth
○ pretty plots software (grafana & kibana)

● Written in a friendly language (python)
● and most importantly….

What we did

13

● For each classAd, create a list of attributes we were interested in
○ How many attributes you can find in the Negotiator classAd?

 [ddavila@vocms0804 ~]$ condor_status -negotiator -l | wc
 391 1220 17030

● Wrote < 300 lines of python using the HTCondor python bindings
● Used a cronjob to execute the script for each of our pools

A very simple example

14

What you get

15

 A list of these:

 [
 Disk = 214761;
 Memory = 2048;
 Name = "slot1_10@glidein_64_218192637@b6515245b4.cern.ch"
]

● We use a home made function to transform into JSON
● Since 8.8.2 the ClassAd module has a new printJson()

Some pretty plots
Number of cores in use by job type

16

Some pretty plots
Number of cores grouped by slot size

17

Some pretty plots
The 10 schedds with the highest duty cycle

18

Some pretty plots
Length of each negotiation phase

19

Conclusions

20

● There is a lot of data you can get from condor
● Using the HTCondor python bindings you can collect these data, in a easy

and friendly way.
● The most difficult part is to decide what to monitor
● Most of the attributes in the classAds are well documented

21

Thank you for listening!

