
Moving your job’s
data

Or, more appropriately, 
“moving your jobs’ data”

Brian Bockelman
HTCondor Week 2019

�1

Why “move” my data?
Why is this even a talk?

!2

My Great
NFS

Server
Worker Node

Job

Start Job

Access
Files

= 😎?
Submit

Why “move” my data?
This is why …

!3

=🔥🤬My Great
Dead NFS

Server
Worker Node

Job

Start Job

Access
Files

Worker Node

Job

Worker Node

Job

Worker Node

Job

Worker Node

Job

Worker Node

Job

Access
Files

Submit

It’s all about management…

• In order for HTCondor to deliver throughput, it must
manage resources.

• I/O resources are perhaps the most important ones to
manage!

• HTCondor can limit I/O activity based on concurrency
level or I/O level.

• But first, you must tell us what you need…

!4

Step 1: HTCondor File
Transfer

• By declaring your jobs’ inputs and
outputs to HTCondor, you:

• Allow HTCondor to manage the
movement of files.

• Allow HTCondor to prepare your job
environment. HTCondor knows to
not even start your job if the input is
unavailable.

• Have the ability to make your job
portable to other infrastructures.

• In the simplest - and most common -
case, HTCondor will also perform the file
transfer.

!5

universe = vanilla
executable = science.exe
arguments = $(Process)
transfer_input_file = \
 input.txt
output = science.out
error = science.err
log = science.log
queue

Step 1: HTCondor File
Transfer

!6

My Great
NFS

Server

Worker Node

Job

Start Job,
Transfer File

Access
Files

Worker Node

Job

Start Job,
Transfer File

…

universe = vanilla
executable = science.exe
arguments = $(Process)
transfer_input_file = \
 input.txt
output = science.out
error = science.err
log = science.log
queue

Submit

If HTCondor knows the job
I/O requirements…

!7

… it can take you places!

My Great Site

My Great
NFS

Server

Worker Node

Job

Start Job,
Transfer File

Access
Files

Worker Node

Job

Start Job,
Transfer File

My Friend’s Site

The Great and Wonderful
Cloud

Worker Node

Job

Worker Node

Job

Ever tried exporting NFS offsite? 🤬

Submit

Arcane…
For users

• If you use the -spool option, HTCondor will make a copy
of your input files to a private directory. This allows you to
make changes locally while your jobs are running.

• The stream_output submit file command will cause
HTCondor to stream output back to the submit host while
the job is running. Useful - but use sparingly (consider
condor_tail or condor_ssh_to_job as well).

• max_transfer_output_mb allows you to put a
maximum cap on the data you transfer back; a useful
sanity check if your job produced 100GB when you
expected 100KB.

• encrypt_input_files allows you to force some files to
be encrypted in flight - even if HTCondor would not
otherwise do this.

• The transfer_output_remaps command allows you to
provide arbitrary mappings from files in the job execute
directory

!8

For admins

• MAX_CONCURRENT_UPLOADS /
MAX_CONCURRENT_DOWNLOADS provide
an absolute limit on the number of files
being transferred at a time

• FILE_TRANSFER_DISK_LOAD_THROTTLE
will further lower the number of concurrent
file transfers based on the I/O load
measured on the submit host’s storage.

• MAX_TRANSFER_OUTPUT_MB sets the
schedd-wide default for maximum data
transfers per jobs (users can override).

• MAX_TRANSFER_QUEUE_AGE is the
maximum time, in seconds, that a transfer
is allowed to proceed before it is killed.

URL-based Transfer
• A typical first response for new sysadmins when they see HTCondor file transfer

is “gross, how do you scale this?”

• The answer is often simple: a 25Gbps connection and a SSD is far cheaper
than your time configuring new things!

• However, there are legitimate use cases when “upgrade your hardware” is not
an option!

• User jobs need to access data not on the submit host.

• Take advantage of specific features of other protocols (e.g., HTTP caching)

• Enormous scale - single workflows need more than 25Gbps sustained.

!9

What now? URL file transfers!

URL-based Transfer
• The transfer_input_files command also

accepts URLs.

• If given a URL, HTCondor will attempt to
download the corresponding resource prior to
starting the job.

• Allows one to pull in files from somewhere
besides the submit host.

• If it’s unable to download all the URL inputs, it
won’t attempt to start the job.

• Anything that the venerable curl library can handle
(HTTPS, FTP) is usable in HTCondor by default.

• Is your favorite protocol not supported by curl?

• Great news: additional protocols can be added
by writing a plugin to HTCondor. Can be as
simple as a bash script.

!10

My Great
HTTP
Server

Worker Node

Job

Start Job

Worker Node

Job

Start JobAccess
Files

Submit

I can do that!
• Wait, why not call curl inside my job? I can do that!

• Miron has a lot of questions: Are you sure you call curl
correctly? Did you pass the right headers to make caching
work? Did you discover the right proxy? Did you set timeouts
appropriately? Did you fine-tune your retry policy?

• When the transfer fails, is this reflected correctly in the job
status?

• If HTCondor doesn’t know about it, HTCondor can’t schedule it!

• Same as with normal file transfers, HTCondor can do the hard work
and (difficult) management if it is told what URLs are needed.

!11

URL-based Transfer

!12

My Great
HTTP
Server

Worker Node

Job

Start Job

Worker Node

Job

Start JobAccess
Files

Submit
universe = vanilla
executable = science.exe
arguments = $(Process)
transfer_input_file = \
 https://example.co/input
output = science.out
error = science.err
log = science.log
queue

Off into the (near) future!
• A significant number of improvements have been done for URL-based transfers in the last

year:

• Error messages greatly improved: URL-based transfers can now provide sane,
human-readable error messages when they fail (instead of just an exit code). Available
in 8.8 series.

• URLs for output: Individual output files can be URLs, allowing stdout to be sent to the
submit host and large output data sent elsewhere. Available in 8.9.1.

• If you use HTCondor to manage credentials, these tokens can be used directly by
URL-based transfers. Available in 8.9.1.

• File transfers are now sorted by the submit host and URLs are transferred last. This
means you can ensure some inputs (such as your S3 credentials!) are at the worker
node before URL transfers are invoked. Available in 8.9.1.

• Have an interesting use case? Jobs can now supply their own file transfer plugins —
great for development! Available in 8.9.2.

!13

Off Into the (Farther) Future

• Checksum / manifest files: We will be checksumming files on-
the-fly (catching integrity error) and providing a “manifest” - a
record of what the correct file contents were when they were read.

• Allows data reuse! If we know the correct contents, then we
can decide whether a file needs to be re-transferred between
subsequent jobs.

• <Your favorite protocol here>: What types of URLs would you
like to see in HTCondor? S3? Google Drive? Dropbox? Xrootd?

• Strongest input so far this week has been S3 support.

!14

Know Your Limits
• When to not use HTCondor file transfer? HTCondor file transfer is based

on moving input to the worker node prior to job startup. This may not be
appropriate for your job:

• It may be computationally expensive to determine what inputs are
needed.

• The job may read a small portion (kilobytes) of a very large file
(terabytes) that is prohibitively large to move completely.

• There’s ways to transform both of the above to HTCondor-file-transfer-
friendly workflows, but it takes work!

• The best thing to do is to understand all the options and trade-offs, not
do a one-size-fits-all solution.

!15

Questions?

!16

= 😎
My Great Site

My Great
NFS

Server

Worker Node

Job

Start Job,
Transfer File

Access
Files

Worker Node

Job

Start Job,
Transfer File

My Friend’s Site

The Great and Wonderful
Cloud

Worker Node

Job

Worker Node

Job

Have an interesting use case? We’d love to hear more!

