
Future DAQ Concepts
Edge ML For High Rate Detectors
Ryan Herbst
Department Head, Advanced Electronics Systems

CPAD 2019
December 8, 2019

(rherbst@slac.stanford.edu)

SLAC TID-AIR
Technology Innovation Directorate

Advanced Instrumentation for Research Division

TID-AIR

2

Overview

● Describe Data Reduction & Processing Challenges
● Overview of VHDL based inference framework

○ Example network
○ Usage model

● Targeted usage in LCLS-2 beamlines (CookieBox)
● Observations on current framework

○ Possible enhancements

2

TID-AIR

3

LINAC Coherent Light Source - II

~3 km

10 000 times brighter
Continuous 1 MHz beam rate
1 million shots per second

3

TID-AIR

4

LCLS-II Detector Raw Data Rates

Image courtesy of Jana Thayer, Mike Dunne

20 to 1200 GB/s

4

TID-AIR

5

Data Processing Techniques At Different System Levels

5

CPUs/GPUs

Farm of FPGAs

FPGA Level

ASIC Level

• Algorithms can be tailored to different
applications (Possibility to use ML)

• Fast feedback to the detector (trigger
generation)

• Vetoing

• Large number of lossless techniques

• Calibration

• Algorithms can be tailored

• Limited number of techniques:

• Back-end zero suppression

• Region of Interest (RoI)

• Application specific
• Limited number of techniques:

• Sparsification
• Event driven trigger
• Back-end zero suppression

• Region of Interest (RoI)

Versatility

Rate reduction

Image courtesy of Jana Thayer, Mike Dunne

EDGE Computing
on camera

Data System

TID-AIR

6

General Requirements & Applications
For ML In Detector Systems

● Target latency < 100uS
○ > 100uS better suited towards to software & GPU processing
○ Specific latency target depends on buffer capabilities of the cameras

■ Typically in the 1uS - 50uS range
● Frame rate of 1Mhz

○ Early detectors will run at 10Khz - 100Khz
● Support fast retraining and deployment of new weights and biases

○ Limits synthesis optimization around zero weights
○ The beamline science and algorithms will evolve
○ Large investment into fast re-training infrastructure

● Target applications:
○ Camera protection against beam misteer or sample icing
○ Region of interest identification
○ Zero suppression
○ Convert raw data to structured data

6

TID-AIR

7

One Possible Approach
VHDL Based ML Framework

• Framework provides a configurable VHDL based implementation to deploy
inference engines in an FPGA

• Layer types supported: Convolution, Pool & Full
• Developed as a proof of concept with limit resources
• Design flow for deploying neural networks in FPGA from Caffe or Tensorflow

model:

Layer
Definition

Train &
Test Data

Sets

Caffe/Tensorflow train and
test software

Weight &
Bias Values

CNN
Config
Record
(VHDL)

Synthesis / Place & Route FPGA

TID-AIR

8

Synthesis, Configuration & Input/Output Data

• Library consists of generic layer modules with input and output dimensions
auto inferred during synthesis based upon input configuration and each layer
configuration.

• Configuration map is determined by the computational element dimensions
along with the input configuration

• For each computation element there is a single bias value and a weight
for each of the connected inputs

• Input and output interfaces are Axi-Stream types, containing values scanned
in the following order:

 for (srcX=0; srcX < inXCnt; srcX++) {
 for (srcY=0; srcY < inYCnt; srcY++) {
 for (srcZ=0; srcZ < inZCnt; srcZ++) {

• Auto generated structures does not take weights and biases into considering
and assumes the values will be dynamic (no pruning).

TID-AIR

9

Generating The Firmware: LeNET Example

● Configure the input data stream:

 constant DIN_CONFIG_C : CnnDataConfigType := genCnnDataConfig (28, 28, 1); // x, y, z

● Configure the network:

 constant CNN_LENET_C : CnnLayerConfigArray(5 downto 0) := (

 0 => genCnnConvLayer (strideX => 1, strideY => 1,
 kernSizeX => 5, kernSizeY => 5,
 filterCnt => 20,
 padX => 0, padY => 0,
 chanCnt => 10, rectEn => false),

 1 => genCnnPoolLayer (strideX => 2, strideY => 2, kernSizeX => 2, kernSizeY => 2),

 2 => genCnnConvLayer (strideX => 1, strideY => 1,
 kernSizeX => 5, kernSizeY => 5,
 filterCnt => 50,
 padX => 0, padY => 0,
 chanCnt => 50, rectEn => false),

 3 => genCnnPoolLayer (strideX => 2, strideY => 2, kernSizeX => 2, kernSizeY => 2),

 4 => genCnnFullLayer (numOutputs => 500, chanCnt => 50, rectEn => true),

 5 => genCnnFullLayer (numOutputs => 10, chanCnt => 1, rectEn => false));

TID-AIR

10

Generating The Code

● Generate connected configuration of all of the layers + input:

 constant LAYER_CONFIG_C : CnnLayerConfigArray := connectCnnLayers(DIN_CONFIG_C, CNN_LENET_C);

● Instantiate the CNN module:

 U_CNN: entity work.CnnCore
 generic map (
 LAYER_CONFIG_G => LAYER_CONFIG_C) -- CNN Layer configuration
 port map (
 cnnClk => cnnClk,
 cnnRst => cnnRst,

 -- Input data stream
 sAxisMaster => cnnObMaster,
 sAxisSlave => cnnObSlave,

 -- Output data stream
 mAxisMaster => cnnIbMaster,
 mAxisSlave => cnnIbSlave,

 -- AXI bus for weights & biases
 axilClk => axilClk,
 axilRst => axilRst,
 axilReadMaster => axilReadMaster,
 axilReadSlave => axilReadSlave,
 axilWriteMaster => axilWriteMaster,
 axilWriteSlave => axilWriteSlave);

TID-AIR

11

Convolution Layer Configuration Parameters

• strideX: number of input points to slide the filters in the X axis
• strideY: number of input points to slide the filters in the Y axis
• kernSizeX: kernel size in the X axis (number of inputs per filter in X)
• kernSizeY: kernel size in the Y axis (number of inputs per filter in Y)
• filterCount: number of filters in the Z direction
• padX: pad size in the X axis
• padY: pad size in the Y axis
• rectEn: flag to enable application of a rectification function on the outputs
• chanCount: number of computation channels to allocate (Z direction)

Computations:
outXCount = ((inXCnt - kernSizeX + 2*padX) / strideX) + 1
outYCount = ((inYCnt - kernSizeY + 2*padY) / strideY) + 1
outZCount = filterCount

Current implementation limits parallelization to elements in the Z direction due to
the way the input data is iterated over.

TID-AIR

12

Pool Layer Configuration Parameters

• strideX: number of input points to slide the filters in the X axis
• strideY: number of input points to slide the filters in the Y axis
• kernSizeX: kernel size in the X axis (number of inputs per filter in X)
• kernSizeY: kernel size in the Y axis (number of inputs per filter in Y)

Computations:
outXCount = ((inXCnt - kernSizeX) / strideX) + 1
outYCount = ((inYCnt - kernSizeY) / strideY) + 1
outZCount = inZCount

Pool layer does not support parallelization.

TID-AIR

13

Full Layer Configuration Parameters

• numOutputs: number of output filters
• chanCount: number of computation channels to allocate
• rectEn: flag to enable application of a rectification function on the outputs

Computations:
outXCount = numOutputs
outYCount = 1
outZCount = 1

Full layer can support between 1 and numOutputs computation channels

TID-AIR

14

Current implementation:
Generated Structure For LeNet-4

● Structure of inter-layer buffers is auto generated using the
needs of the input and output layers, taking parallelism of the
layers into consideration.

● Consistent API between layers allows partial networks and
individual layers to be verified by modifying the structure
configuration before synthesis.

● Processing of each layer occurs in parallel
● Total latency is the sum of each layer’s processing time
● Max frame rate is limited by the processing latency of the

slowest layer
○ Each layer is flow controlled with full handshaking

between layers

Double
Buffer

Input
Stream Conv

Layer
Double
Buffer

Pool
Layer

Double
Buffer

Conv
Layer

Double
Buffer

Pool
Layer

Double
Buffer

Full
Layer

Double
Buffer

Full
Layer

Double
Buffer

Output
Stream

Config
Ram

Config
Ram

Config
Ram

Config
Ram

TID-AIR

15

Current implementation:
Convolution Layer Processing

● Iterate through each of the computational elements in the x & y dimension

for (filtX = 0; filtX < outXCount; filtX++) {
 for (filtY = 0; filtY < outYCount; filtY++) {

● Iterate through each of the computational elements in the Z direction, process
chanCount z-dimension elements in parallel:

 for (filtZ = 0; filtZ < outZCount/chanCount; filtZ++) {

● For each computational element, iterate over its connected inputs while
performing multiply and accumulate, with one extra clock for bias value.

 for (srcX=0; srcX < kernSizeX; srcX++) {
 for (srcY=0; srcY < kernSizeY; srcY++) {
 for (srcZ=0; srcZ < inZCount; srcZ++) {

latency(clock cycles) = (outXCount * outYCount * (outZCount / chanCount))
 (kernSizeX * kernSizeY * inZCount + 1) *

TID-AIR

16

Current implementation:
Pool Layer Processing

● Iterate through each of the computational elements in the x, y & z dimension

for (filtX = 0; filtX < outXCount; filtX++) {
 for (filtY = 0; filtY < outYCount; filtY++) {

 for (filtZ = 0; filtZ < outZCount; filtZ++) {

● For each computational element, iterate over its connected inputs finding max
value, index of input Z element = index of output Z element.

 for (srcX=0; srcX < kernSizeX; srcX++) {
 for (srcY=0; srcY < kernSizeY; srcY++) {

latency = (kernSizeX * kernSizeY) *
 (outXCount * outYCount * outZCount)

TID-AIR

17

Current implementation:
Full Layer Processing

● Full layer has a single dimension X.

● Iterate through each of the computational elements in the X direction, process
chanCount x-dimension elements in parallel:

 for (filtX = 0; filtX < outXCount/chanCount; filtX++) {

● For each computational element, iterate over its connected inputs while
performing multiply and accumulate, with one extra clock for bias value.

 for (srcX=0; srcX < inXCnt; srcX++) {
 for (srcY=0; srcY < inYCnt; srcY++) {
 for (srcZ=0; srcZ < inZCnt; srcZ++) {

latency = (inXCnt * inYCnt * inZCnt + 1) * (outXCount / chanCount)

TID-AIR

18

LeNet-4 Fpga Utilization

Resource Total Available PCT

CLB LUTs 116110 663360 17.5%

CLB Regs 33949 1326720 3%

Block ram 951 2160 44%

DSPs 333 2160 15.4%

Xilinx XCKU115

TID-AIR

19

CookieBox – Angular Streaking Detector
Beam Qualification For Image Selection

Hartmann, N. et al., Nature photonics, 2018
Siqi, Li et al. Optics express, 2018

Microchannel
Plates (MCP)

Collection
Tube

Slides from A. Therrian
19

● Detector is used to veto LCLS2 detector acquisition
based upon detected beam parameters

TID-AIR

20

DAQ Chain Overview

Digitizer

Digitizer
FPGA

Digitizer

Digitizer

Digitizer

Digitizer

Digitizer

Digitizer

FPGA
General
DAQ
system

FPGA

FPGA

FPGA

P
C

IE
 B

us

x2
Pre-processing

Slides from A. Therrian
20

● Direct card to card DMA, not
through processor memory

○ No CPU involvement

TID-AIR

21

CookieNet Layer Configuration & Utilization

21

 -- Input data config
constant DIN_CONFIG_C : CNNDataConfigType := genCnnDataConfig (800, 1, 1);

 -- Network Config
 constant NN_COOKIE_C : CnnLayerConfigArray(2 downto 0) := (

 0 => genCnnFullLayer (numOutputs => 200, chanCnt => 200, rectEn => true),
 1 => genCnnFullLayer (numOutputs => 100, chanCnt => 100, rectEn => true),
 2 => genCnnFullLayer (numOutputs => 5, chanCnt => 5, rectEn => true)));

● Input array = 800 x 1 x 1
● Layer 1 = Full with 200 outputs, fully parallel
● Layer 2 = Full with 100 outputs, fully parallel
● Layer 3 = Full with 5 outputs, fully parallel

Slides from A. Therrian

TID-AIR

22

Functionality Test

Trained Neural
Network

Dataset
(10000)

GPU

GPU
predicted

labels

Trained Neural
Network

FPGA

FPGA
predicted

labels

100 %
match

Slides from A. Therrian
22

TID-AIR

23

Latency – Measured

Layer 1 : 800 inputs
Layer 2 : 200 inputs

Output Layer : 100 inputs

19.3

4.8

23
Slides from A. Therrian

TID-AIR

24

Current Implementation Observations:
Full Layer

● Good utilization of DSP elements as 100% of layer can be operated in parallel
○ All elements active each clock cycle
○ All weight and bias configuration memories are active each clock

● Input buffer arrangement is decent as input array is iterated over sequentially

● Output buffering is not consistent with block ram as the output values are all
written during the final clock.
○ Current generic block ram model results in wasted ram resources when

parallelism is increased.
○ Cascaded full layers generates muxes with a large number of inputs in the

following layer, creating large combinatorial latencies
○ Easy to address with proper pipelining and inter layer buffer restructuring

● Layer latency is dominated by the number of inputs
○ Width of input memory buffer could be increased to output multiple input

pixels per clock.
■ Width of 128 bits = 4 x 32-bit values
■ Latency for largest layer decreases from 800 clocks to 200 clocks

TID-AIR

25

Current Implementation Observations:
Convolution & Pool Layers

● Latency is driven by the repeated scan of relevant inputs for each computational
element as they are iterated over
○ Parallelism is only available in the z-dimension of computational elements

due to the way the inputs are scanned and accessed.
○ Allocated DSP elements are idle during most of the clock cycles.

● Large block ram utilization for storing weights and measures
○ Most values not needed each clock cycle
○ An enhancement would be to stream weight and bias configuration from

DRAM, aligned to input data, or to cache configuration as needed from
external DRAM

● Better approach would be to scan once
over input data, passing data to a
reusable processor, caching state &
configuration data as necessary
○ Latency further reduced by passing

input values in parallel

TID-AIR

26

Summary

● Proof of concept framework is viable for deploying inference networks in FPGAs
○ Framework provides ability to trade off latency for resource usage
○ Fixed network structure with fully configurable weight and bias configuration allows for fast

re-training and rapid network re-deployment

● Framework has plenty of opportunities for optimization and enhancement
○ Continue work requires partnerships with funded projects and real world applications for testing

■ LCLS2 detector projects are an opportunity
■ Possible interest for HEP projects @ SLAC

● Other areas under investigation:
○ HLS based layer processing cores with data movement coordinated by lower level VHDL

■ Smaller units for debug and simulation, greater visibility into data movements
■ Cores can be dynamically swapped in based upon data patterns (partial reconfiguration)

○ Keep an eye on Xilinx offerings
■ Xilinx is heavily invested in higher level languages for FPGA based co-processing
■ DPU cores and other hard core processing may be interesting.

● They are geared towards co-processing, it may be possible to drive them purely from
firmware

○ General purpose ASIC offerings
○ DirectDMA to GPUs: Custom fiber card with inter-card DMA capability at ~80Gbps 26

TID-AIR

27

The End

