Dec 8, 2019 · CPAD Instrumentation Frontier Workshop 2019

Machine Learning based algorithm for reconstructing prompt and displaced muons at Level-1 in CMS detector

Sergo Jindariani¹, Jia Fu Low² on behalf of the CMS collaboration

- ¹ Fermilab
- ² Unive<mark>rsity of Flo</mark>rida

Overview

- Introduction
 - CMS muon system & L1 trigger system
 - Endcap Muon Track Finder (EMTF) at L1
 - Phase-2 EMTF objectives
- NN for prompt & displaced muon p_T assignment
- NN implementation in the FPGAs
- Summary

1846 = 250 (DT) + 540 (CSC) + 480 (RPCb) + 576 (RPCe)

Phase-2 Muon Upgrade

To maintain low trigger thresholds for muons at Phase-2 (**200 PU**), the forward muon system will be enhanced with new muon detectors (**GEM**, **iRPC**, **ME0**).

Some electronics of the existing muon detectors will also be replaced.

Pileup (PU) = in-time, inelastic collisions per bunch crossing.

108 (GEM) + 72 (iRPC) + 36 (ME0)

L1 Muon Trigger

- CMS two-level trigger system:
 - Level-1 (L1): custom electronics (e.g. FPGAs) used to reduce event rate of 40 MHz to 100 kHz within 4 μs latency.
 - High Level Trigger (HLT): large CPU farm used to run software algorithms to further reduce event rate to 1 kHz.
- L1 muon trigger system:
 - Muon detectors have dedicated electronics that create the Trigger Primitives (TPs).
 - The TPs are collected and sent to the regional Track Finders (barrel, overlap, endcap) which build muons and measure their transverse momenta p_T.
 - The muons are sent to the Global Muon Trigger (GMT), and then to the Global Trigger (GT), which makes the "L1 Accept" trigger decision (typically $p_T > 22$ GeV for muons).
- L1 muon trigger algorithms need to be executed very quickly and efficiently.
- For Phase-2, the upgraded L1 trigger will have increased bandwidth (750 kHz) and longer latency (12.5 μs).
 - There will be a "correlator" layer that correlates muons and tracker tracks. Tracker tracks will be available at the L1 for the first time in Phase-2, and will have much better efficiency and p_T resolution. An interesting topic but won't be covered in this talk

Phase-2 objectives

- Challenges:
 - Highly non-uniform magnetic field with very little magnetic bending in the very forward region.
 - Large background from low p_T muons, punch-throughs, neutrons, etc that could lead to non-linear PU dependence.
- For Phase-2, EMTF has to evolve to
 - Incorporate the **new muon detectors**.
 - Improve efficiency, redundancy, p_T resolution, timing.
 - Maintain the same trigger threshold at a reasonable rate at 200 PU to remain sensitive to electroweak scale physics.
- Phase-2 algorithm is named EMTF++

EMTF++ algorithm

- We receive input trigger primitives from: CSC, RPC, GEM, iRPC, MEO.
- Pattern recognition
 - Use patterns to find stubs in different muon stations that are consistent with muons. Different pattern shapes are used in different p_T bins.
- Track building
 - Build track candidates by selecting a unique stub from each muon station. If there are ambiguities, the stubs are ranked by $\Delta \phi \& \Delta \theta$ compatibility.

• p_T assignment

- Use the machine learning algorithm (e.g. BDT, NN) to determine the p_T using multiple discriminating variables from the track candidate: $\Delta \phi$'s, $\Delta \theta$'s, bend, η , etc.
- In Phase-1, the BDT algorithm is used. It is implemented with a large LUT on the FPGA. The input variables are encoded as an 30-bit address, which is used to retrieve the p_T value stored in the LUT. For Phase-2, the LUT address space will be increased to 37-bit.
- As an alternative, we are investigating running NN directly on the FPGA for Phase-2. Focus of this talk

EMTF++ patterns

- Muon bending in the Endcap has strong (p_T, η)-dependence.
 - Use 9 bins in q/p_T, 6 bins in η
 - Pattern is the (φ,z)-view. From bottom to top:
 φ at innermost station to φ at outermost station. φ in 0.5° unit.
- Patterns are used to detect if the stubs are consistent with muon bending.

MC 200 PU events (pileup only)

60° EMTF sector in the η region of 2<| η |<2.16. Muon moving outward from bottom to top.

$p_{\rm T}$ assignment with NN

• Extract input from the stubs associated to the track candidates: **φ**, **θ**, **bend**, **quality**, **time**.

		ф			θ		bend					
	num of bits	range	resolution	num of bits	range	resolution	num of bits	range	resolution			
CSC	11	[0,2047]	1/16-strip	7	[0,111]	wiregroup	5	[-16,15]	1/16-strip			
RPC	5	[0,31]	strip	2	[0,2]	roll	-					
iRPC	7	[0,95]	strip	7 (?) [0,82] (?) p		position along strip	-					
GEM	8	[0,191]	2-strip	3	[0,7]	roll	-					
ME0	10	[0,767]	1/2-strip	4	[0,15]	1/2-roll	10	[-512,511]	1/4-strip			
DT	12	[-2048,2047]	1/4096 rad	3	[0,6]	bti group	10	[-512,511]	1/512 rad			
		quality			time							
	num of bits	range	definition	num of bits	range	resolution	num of bits	range	resolution			
CSC	2	[3,6]	# of layers	-								
RPC	3	[1,8]	cluster width	4	[0-15]	1/16-BX						
iRPC	3	[1,8]	cluster width	4	[0-15]	1/16-BX						
GEM	3	[1,8]	cluster width	-								
ME0	4	[4,6]	# of layers	-								

- At the moment, consider **36 features**
 - Note: allocate 12 stations, although a muon can go through at most 8-10 stations depending on η

	ME1/1	ME1/2	ME2	ME3	ME4	RE1	RE2	RE3	RE4	GE1/1	GE2/1	ME0
ф	1	×		1	1	1	1			×	•	×
θ	1	×		1	1	1	1	1	1	1	×	
bend	1	1	1	1	1							
quality	1	1	1	1	1							1
time												

p_T assignment with NN

At each node, compute $o_j = \varphi \left(\sum_{i=1}^n w_{ij} \cdot x_i + \theta_j \right)$ weights inputs $x_l \longrightarrow w_{lj}$ $x_2 \longrightarrow w_{2j}$ $x_3 \longrightarrow w_{3j}$ \vdots \vdots $x_n \longrightarrow w_{nj}$ $x_n \longrightarrow w_{nj}$ $x_n \longrightarrow w_{nj}$

Can be done on the FPGA!

Loss function: Huber loss [Wikipedia] Activation function: ReLU Batch normalization: applied right after the input layer and in each hidden layer

Training dataset: 2M muons

ML framework: K Keras

Testing dataset: 1M muons

NN performance

- From simulation studies, NN has been shown to improve the efficiency and p_T resolution, and reduce the trigger rate
 - NN allows us to easily add info from the additional muon detectors
 - Trigger rate around 20 kHz for L1 p_T > 20 GeV @ 200 PU.
 - Trigger rate linear up to 300 PU!

Displaced muons

- There is an emerging strong interest in BSM models that involve long-lived particles that can decay into muons (displaced muons).
- The barrel counterpart BMTF has implemented the Kalman Filter (now called KBMTF) which allows them to trigger for both prompt and displaced muons.
 - KBMTF starts the propagation from the outermost station to the innermost. At the end of the propagation, they can decide to add the vertex constraint (prompt) or not (displaced).
 - Prepared for use in Run 3 (starting 2021).
- We wanted to see if we could also trigger for displaced muons in the Endcap using machine learning.
 - Need to find the **vertex-unconstrained** p_T and the **impact parameter** d_0 .
 - d_0 is defined as the distance of closest approach of the track w.r.t the positive z-axis. We use the sign convention such that $d_0 = x_v \sin \phi y_v \cos \phi$ as $p_T \to \infty$.

 (x_v, y_v)

R

 (x_c, y_c)

Displaced muons

- Current prompt muon algorithm has acceptance for moderately displaced muons (efficiency drops to 0 at d₀ ~ 20 cm)
 - We need to add new displaced patterns to improve the acceptance.
 - And train a new NN for the displaced p_T and d_0 assignments.
- For Phase-2, the simplest plan is to do separate reconstructions for prompt and displaced muons (doubling the num of patterns and NNs)
- For Run-3, due to limited firmware resources, we plan to only add the NN into the current EMTF firmware. More about this later

Displaced EMTF++: patterns

- We generate patterns for high p_T displaced muons
 - Use 9 bins in d_0 , 6 bins in η . Require $p_T > 14$ GeV. The d_0 range is -120 to 120 cm.
 - Pattern is the (φ,z)-view. From bottom to top:
 φ at innermost station to φ at outermost station. φ in 0.5° unit.
- New patterns improve acceptance to about 90% in the low η region, but worse for large d_0 and high η muons.
 - Some inefficiency due to TP reconstruction due to large incidence angle
- These patterns are useful for Phase-2. But for Run-3, we still need to figure out how to modify the patterns in the current EMTF firmware.

60° EMTF sector in the η region of 2<| η |<2.16. Muon moving outward from bottom to top.

Displaced EMTF++: NN

- In order to deploy during Run-3, displaced NN is trained with only inputs that are available in the current EMTF firmware.
 - Reduced to 23 features (CSC/RPC only)
 - CSC φ and bend are the not the improved version as used for Phase-2 prompt NN.
 - 4 stations → 6 possible pairs: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4
 - RPC is subbed in if CSC is not found in a given station/chamber.

		Δ	φ					Δ	θ				Be	nd		i	s RPC	; (1 bi	t)		Ring	(1 bit)			F/R (1 bit)		Track
1-2	1-3	1-4	2-3	2-4	3-4	1-2	1-3	1-4	2-3	2-4	3-4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	θ
1	1	1	1		٠	*					•	•			٨	•				*				1				1

Displaced EMTF++: NN performance

- We decided to use $L1 p_T > 20 \text{ GeV}$ and $L1 d_0 > 20 \text{ cm}$ as the working point in the Endcap.
 - This gives us 40-50% efficiency for displaced muons with d_0 from 30 to 100 cm, when averaged over η from 1.2 to 2.4 (there is a strong η dependence).
 - Trigger rate of O(10) kHz at 200 PU.

• What we have learned:

Still work in progress

- p_T resolution for displaced (60%) is much worse compared to prompt (20%) due to losing the vertex constraint.
- Large tail in the p_T resolution where p_T is under-measured for high- p_T muons. This leads to low efficiency at the plateau even with L1 p_T > 20 GeV cut.
- d₀ resolution is quite good about 5 cm.
- Performance has strong η dependence. Efficiency for large d₀ muons at high η is basically zero.

Firmware implementation

• <u>hls4</u>ml

See talk by Sergo

- A toolkit to implement fast neural network inferences in FPGAs using Vivado High-Level Synthesis (HLS).
- Can convert NN models from popular ML libraries (Keras, Tensorflow, etc) into VHDL codes, which can be used to generate the firmware.
 - Optimize usage of DSPs in the modern FPGAs for multiply-accumulate operations
- See <u>arxiv:1804.06913</u>

	Device	# of DSPs
_	Kintex-7 325T	840
	Virtex-7 690T	3600
	Kintex UltraScale KU115	5500
	Virtex UltraScale+ VU9P	6800

Basic DSP48E1 Slice functionality

The hardware: MTF7

- The current EMTF firmware runs on MTF7 board ^[1,2]
 - Virtex-7 690T-2 FPGA which has 3,600 DSP's.
 - Largest logic resource usage: LUT and BRAM. Only 1.2% DSP's are used.
- MTF7 setup at UF for testing firmware:
 - PCIe communication for large-scale tests and debug.

[1] CMS Collaboration, "CMS Technical Design Report for the Level-1 Trigger Upgrade", CMS-TDR-012
 [2] D. Acosta et al., "The CMS Modular Track Finder boards, MTF6 and MTF7", Journal of Instrumentation 8 (2013) C12034

NN resource usage

HLS estimates

Name	BRAM_18K	DSP48E	FF	LUT
DSP Expression	-	+ - -		
FIFO	-	-	-	-
Memory	39 -	/102 -	220117	83726
Multiplexer Register	- 0	- -	- 3486	1404 32
Total	39	2017	223603	85168
Available	2940	3600	866400	433200
Utilization (%)	1	56	25	19

+ Timing (ns): * Summary:			
Clock	Target	Estimated	Uncertainty
ap_clk	4.00	3.492	0.50
+ Latency (clo * Summary: ++	ock cycle	es): ++	+
Latency min ma	/ Int ax min	erval Pip max T	oeline Type
48	48 1	1 fur	nction

Implementation

HLS resources estimate is accurate for DSP, conservative for FF and LUT Latency estimate of 48 clk

Running NN on hardware

hv	v_ila_2																-	
	Waveform - hw_ila_2																? _	. 🗆 ×
tions	Q + − ϑ ▶ ≫ ■	👍 🔍	Q 🔀			<i>.</i>												
d o p	ILA Status: Idle			Firs	t set o	ot inp	ut hi	its I							Mu	ons		
boar	Name	Value	510	515	520	525	530	0	535	540	545	5	550		555	560	565	
Dash	> ♥ my_test_algo/phi_me11[17:0] > ♥ my_test_algo/phi_ME2[17:0] > ♥ my_test_algo/res_invpt[17:0] > ♥ my_test_algo/res_udiscr_1[17:10] > ♥ my_test_algo/res_pudiscr[9:0] > ♥ my_test_algo/phi_ME3[17:0] > ♥ my_test_algo/phi_ME12[17:0]	00000 0001d 359ea 00 000 0006b 0003d	Sfed6 X. 0005a X. 0003a 00005a X. 000050 X. 000000 Updated at: X	2019- Jan- 31	· · · · · · · · · · · · · · · · · · ·					00000		<. \0 <. \ . \ . <. \ 0 <. \ 0 \ . \ 0		X . X . X . X . X . X . X . X . X . X . X .				
	Settings - hw_ila_2 Status - hw_i	la_2 ×					? _ 🗆	Trigg	er Setup - hw_ila	a_2 × C	Capture Setu	p - hw_i	la_2				?	
	🥲 🕨 🔉 📕 🤐							Q	+ - Þ,									
	Core status	e					^	Name		0	perator	R	adix		Value		Port	Compa
		_						my_te	st_algo/vb_phi_me	ell !	-	~ [3]	~	0	~	probel2[0]	1 of 1
	Capture status - Window 1 of 1 Window sample 0 of 1024						v	<									_	>

Running at 200 MHz. Verified latency of 48 clk as given by HLS estimate. So, it takes 240 ns to get the $p_T \& d_0$ of the first muon.

Validated HLS outputs with HW outputs for 1k muons.

(1/p_T)_HLS - (1/p_T)_HW

NN resource usage

The silicon neural network

- hidden layer #1
- hidden layer #2
- hidden layer #3

(recently updated firmware with 250 MHz freq and 70 clk latency)

Adding NN into the EMTF FW

- Synthesis of the current EMTF firmware + NN in the Virtex-7 FPGA
- They fit in the same FPGA! Nice complementarity in terms of resource usage for EMTF & NN. (NN has taken over the unused DSP's)
- Possible for use as early as Run 3?

Estimates for Phase-2 FPGA (VU9P)

HLS estimates

== Utilization Est	imates				
* Summary:					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
IDSP Expression FIFO Instance Memory Multiplexer Register	- - 39 - - 0	- - 2420 - - -	- 69109 - - 4280	- 90580 - 1404 32	- - - - - -
Total	39	2420	73389	92022	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	~0 +	35	3	7	0
+ Timing (ns)					

APd board being developed

Looking into the Phase-2 APd board ^[3] with Virtex US+ VU9P FPGA, which has 3X more LUT & FF, and 2X more DSP.

NN should comfortably fit in the VU9P (DSP usage is 35%)

32 clk @ 333 MHz ≈ 100 ns latency

[3] CMS Collaboration, "The Phase-2 Upgrade of the CMS L1 Trigger Interim Technical Design Report", CERN-LHCC-2017-013, CMS-TDR-017

Summary

- NN has been used to show promising results for reconstructing prompt and displaced muons in the Endcap
 - which is a difficult region due to non-uniform magnetic field and large background rates.
 - We started experimenting with NN two years ago, and started our own study about displaced muons one year ago. We have made good progress in (i) learning to use the ML technology; (ii) using it to explore new phase space.
- NN implementation into FPGA has been demonstrated. Its highly parallel structure and ability to process large num of inputs make it a good choice for L1 trigger
 - We leveraged hls4ml to significantly reduce the firmware development time. We want to continue to study if the resource usage can be further optimized.

Backup

Phase-2 CMS detector quadrant

EMTF++ patterns (prompt)

EMTF++ patterns (displaced)

Input variables for BDT

_																									
	Mode			Δ	ф			Δф	Δθ							Bend	+ RPC)		F,	/R		θ	Md	Bits
		1-2	1-3	1-4	2-3	2-4	3-4	sign	1-2	1-3	1-4	2-3	2-4	3-4	1	2	3	4	1	2	3	4			
15	1-2-3-4	7			5		4	2			2				2	1	1	1	1				3	1	30
14	1-2-3	7			5			1		3					2	1	1		1	1			5	3	30
13	1-2-4	7				5		1			3				2	1		1	1	1			5	3	30
11	1-3-4		7				5	1			3				2		1	1	1		1		5	3	30
7	2-3-4				7		5	1					3			2	1	1		1			5	4	30
12	1-2	7							3						3	3			1	1			5	7	30
10	1-3		7							3					3		3		1		1		5	7	30
9	1-4			7							3				3			3	1			1	5	7	30
6	2-3				7							3				3	3			1	1		5	7	30
5	2-4					7							3			3		3		1		1	5	7	30
3	3-4						7							3			3	3			1	1	5	7	30

	I	Mode	Mod	e identif	ier	Bits	Addresses
			in LU	JT addre	ess		
	15	1-2-3-4	1XXX	XXXX		1	2^29
	14	1-2-3	011X	XXXX		3	2^27
	13	1-2-4	010X	XXXX		3	2^27
	11	1-3-4	001X	XXXX		3	2^27
	7	2-3-4	0001	XXXX		4	2^26
	12	1-2	0000	111X		7	2^23
	10	1-3	0000	110X		7	2^23
	9	1-4	0000	101X		7	2^23
	6	2-3	0000	100X		7	2^23
	5	2-4	0000	011X		7	2^23
-	3	3-4	0000	010X		7	2^23

The inputs to the BDT must be compressed into the 30-bit address space. The compression scheme depends on the track "mode".