

Particle Flow at 40 MHz with the CMS L1 Trigger

Christian Herwig, for the CMS L1PF Team CPAD Instrumentation Frontier Workshop December 8-10, 2019

Outline

- $\boldsymbol{\cdot}$ Motivation and the High-luminosity LHC
- Particle Flow reconstruction
 - PUPPI Pileup subtraction
- The Phase-II Upgrade to the L1 CMS Trigger
- Progress of PF+PUPPI implementation

Dec. 9, 2019

Dec. 9, 2019

SM hh

Dec. 9, 2019

C. Herwig – CPAD Instrumentation Frontier Workshop

C. Herwig – CPAD Instrumentation Frontier Workshop

Naively scales with luminosity

Challenges to Phase-II L1 Trigger

- L1 Accept rate scales ~ linearly with luminosity increase
 - Must maintain performance in hostile environment!

Challenges to Phase-II L1 Trigger

- L1 Accept rate scales ~ linearly with luminosity increase
 - Must maintain performance in hostile environment!

Take *hh* production in 4*b* (or *bb*ττ) decay mode

Higher pileup → Extra stochastic energy enters into the jet cone

More low-p⊤ jets to "measure high" than vice versa → **Higher trigger rate**

Challenges to Phase-II L1 Trigger

- L1 Accept rate scales ~ linearly with luminosity increase
 - Must maintain performance in hostile environment!

It gets worse !!

Background (uncorrelated coincidences) ~ (lumi)²

Not new problems, solved offline with Particle Flow Reco+

Particle Flow Reconstruction

- Idea: combine measurements across all sub-detectors to achieve best possible resolution per object
 - Algorithm returns a list of single-particle candidates

Particle Flow Reconstruction

Idea: combine meaRarticle flow impacts all sub-detectors

Pileup Per Particle Identification α

 Jdea: get probability that a neutral PF candidate is pileup based on local activity from the leading vertex

Pileup Per Particle Identification

 Idea: get probability that a neutral PF candidate is pileup based on local activity from the leading vertex

Improved p_T-miss resolution

Architecture of the Phase-II L1 Trigger

Architecture of the Phase-II L1 Trigger Track trigger Muon trigger Calorimeter trigger **Detector Backend systems** CSC **GEM iRPC** RPC TF TP BC HF CE **Barrel** OMTF **EMTF** Local BCT Laver-1 Layer 1: Run the PF+PUPPI algorithm itself Global External Tragers Particle Flow Layer 1 PF CT-PPS **Particle Flow Layer 2** **Correlator Trigger BPTX** BR" GT Layer 2: Algorithms using PF+PUPPI inputs MT rnase-z ingger project

Dec. 9, 2019

C. Herwig – CPAD Instrumentation Frontier Workshop

Strategy for L1 Implementation

Layer

- Take advantage of the inherent locality of PF+PUPPI
 - Distribute computation across many processing units
- Processing is divided into three main steps:
 - Regionalization (VHDL)
 - PF+PUPPI calculation (High Level Synthesis C++)
 - Algorithms using PF+PUPPI inputs (HLS C++) Layer 2
- HLS: no expertise required!
 - Fast prototyping, debugging, comparison of alg variants

Dec. 9, 2019

C. Herwig — CPAD Instrumentation Frontier Workshop

Regionizer validation

VHDL algorithm validated with simulated data inputs

objects

100

80

60

Simulation

Emulation

100%

match!

— EM calo

- Muons

- Tracks

- Calo

HW Particle Flow + PUPPI

- Regionalization → small # of objects to link (truncation)
- Cluster input pre-processing: exploit shapes
- PUPPI 'linearized'; smaller cone size

Resource drivers

- \cdot Many ΔR calculations for track-calo linking drives DSP
 - Scales as (#tracks)*(#calo clusters)
- PUPPI weights drive BRAM usage
 - To compute $p_T/\Delta R$ quickly requires division tables
 - DSPs also used to map (p_T , ΔR) \rightarrow PUPPI weights

Resource	LUT	FF	BRAM	DSP
Usage	528k	785k	871	1020
% VU9P	45%	33%	40%	15%

PF+PUPPI resources for 22 tracks, 15+13 calo clusters

Regionalization schemes

Resources vs. various initiation intervals and region sizes

Dec. 9, 2019

Hardware Prototype

Placed preliminary algorithm on VU9P

ATCA carrier card development lead by APx consortium

NIVERSITY

IRGINIA

UNIVERSITY of **FLORIDA**

Dec. 9, 2019

C. Herwig — CPAD Instrumentation Frontier Workshop

тне

UIC

ILLINOIS

CHICAGO

NIVERSITY OF

Layer 2 algorithms — Jets and MET

Use PF+PUPPI candidates to build jets, energy sums

Layer 2 algorithms — Tau ID NN

Identify hadronic tau decays using PF+PUPPI candidates

A proof-of-principle prototype Developed using hls4ml

- Inputs: 10 nearby PF candidates (p_T,η,φ,id)
- Dense w/ 3 hidden layers
 (25,25,10) → 1 MVA ID
- This implementation:
 - Up to 18 PF+PUPPI candidates / event

LUT	FF	DSP	Latency
90k	150k	1400	210ns
7%	6%	20%	

Layer 2 algorithms — Tau ID NN

Identify hadronic tau decays using PF+PUPPI candidates

A proof-of-principle prototype Developed using hls4ml

- Inputs: 10 nearby PF candidates (p_T,η,φ,id)
- Dense w/ 3 hidden layers
 (25.25.10) → 1 MVA ID

See hls4ml talk / Sergo + L1 Muon / Jia Fu + ML trigger / Zhenbin

Conclusion

- The Level-1 Particle Flow Trigger is an ambitious addition to the Phase-II upgrade
- Correlation of all major sub-detectors allows unprecedented event reconstruction at 40mhz
- Capability promises to significantly enhance CMS sensitivity to interesting weak-scale physics

Backup

Particle Flow Reconstruction

Pileup Per Particle Identification

 10^{-2}

 Idea: assign a probability that a neutral PF candidate is pileup based on local activity from the leading vertex

Data, charged LV MC, charged LV

- Discriminant favor network arby, high-p⊤ particles (in cone)
 - QCD is collinear. while pileup is diffuse

Data, charged LV MC, charged LV Data, neutral MC, neutral Pileup Per Particle Identification

- Idea: assign a probability that a neutral PF candidate is pileup based on local activity from the leading vertex
 - Discrir¢inant favor nearby, high-p⊤ particles (in cone)
- ¹⁰ ¹⁵ Q²CD²⁵ collinear, while pileup is diffuse

Latency budget

Architecture of the Phase-II L1 Trigger

Architecture of the Phase-II L1 Trigger

FPGA / TMUX / Region view

Firmware - Regionalization

Dec. 9, 2019

PF+PUPPI algo

