Fermilab Dus. Department of Science

Tracking and Timing with Induced Current Detectors

Ronald Lipton CPAD 2019 Dec. 10 2019

Introduction

There has been increasing interest in fast timing as well as "intelligent" detector systems. I would like to present some ideas for alternate designs of such systems looking at how technology for silicon-based detectors might evolve. This is a talk about the future - next generation of collider experiments.

We focus on capability enabled by new technologies that provide small pixels with low capacitance and sophisticated processing

- 3D integration of sensors and electronics
- Monolithic active devices
- Semiconductor substrate engineering

Some Basics - time resolution

• The rule of thumb for the time resolution of a system dominated by jitter is:

- slew rate (dV/dt) is related to the inverse amplifier rise time, C_L is the load capacitance t_d and t_a are the detector and amplifier rise times and g_m is the input transistor transductance - related to input current, and A is a characteristic of the amplifier.
 - Fast timing -> large S/N, fast amp, small load capacitance
 - There are tradeoffs available

More Basics - Signal Development

- Signal induced by moving charges depends on work done by circuit. The charge induced on an electrode depends on the coupling between the moving charge and the electrode (Ramo's theorem)
- We usually work with simple parallel plate systems
- In a multi-electrode system the induced current on an electrode depends on the velocity of the charge and the value of the effective "weighting" field
- Weighting field is calculated with 1 V on measuring elected, 0 V on others
- There are fast transient induced currents on neighbor electrodes that integrate to zero - can we use them?

$$i = -q\vec{E}_{w} \times \vec{v}$$
$$Q_{s} = \int i \, dt = q \int \vec{E}_{w} \, d\vec{x}$$
$$Q_{1 \to 2} = q(V_{w2} - V_{w1})$$

3D Integration and small pixels

Fermilab has been involved the development of 3D sensor/ASIC integration for almost a decade and have demonstrated (with industrial partners):

- Hybrid bonding technology
 - Oxide bonding with imbedded metal through silicon vias (TSV)
- Bond pitch of 4 microns
- First 3-tier electronics-sensor stack
- Small pixels with ADC, TDC (24 microns)
- Small TSV capacitance (~7 ff)
- The noise in hybrid bonded VIPIC 3D assembly is almost a factor of two lower than the equivalent conventionally bump bonded parts due to lower C_{load}

noise (electrons)

Counts

Methodology

We explore simple systems with various pixel sizes, detector thickness and pulse shapes

- Build a (Silvaco) TCAD (2D or 3D) detector model
- Inject a Q_{tot}=4 fc pulse
- Extract the capacitance and pulse shapes at the electrodes
- Inject the resulting pulse into a SPICE model of a generic 65nm <u>charge sensitive</u> amplifier including noise
- Analyze the characteristics of the resulting output pulses
- For angled track studies I use simple op amp with defined bandwidth model with adjustable bandwidth

Pulses from "x-ray" at~100µ 200µ thick detector

TCAD Simulation

Simple Example - X-Rays

Suppose an application requires fast timing on high energy x-rays

 Usually we would like thin detectors for fast timing, but thin detectors imply low efficiency - can we use induced currents to achieve time resolution in a thick detector?

🚰 Fermilab

Pulse Shapes - 200 micron detector X-ray 2D Simulation

X-Ray With Noise at 185/200 micron depth

- Apply a constant threshold of E1~10 mV, E4~130 mV
- Tabulate time at threshold crossing including noise
- Edge pixel can provide a "start" time stamp if needed

Example - MIP in a 50 micron Detector

 σ ~25 micron pitch, 50 microns thick 200

V, sensor potential distribution

Pulse on central pixel

Amplifier output with noise, 20ff load

Comments

The 20-30 ps resolution will be degraded in a real system However:

- All pixels with spacing small compared to depth will have similar signals ~ 16 pixels for a 25x200 micron sensor x 4 in (uncorrelated) time resolution
- The central pixel will see a large signal within a few ns of the leading edge initial thresholds can be set low and signals latched only if a central pixel fires at a higher threshold
- The pattern of pixels will provide depth and slope information
- Multiple thresholds or more sophisticated processing can give a time walk correction
- These results are for n-on-p with maximum field at the top. n-on-n sensors have a maximum field at the bottom. The field profiles can be adjusted to suit the application by varying the applied bias

Pattern Recognition

Collider based experiments have to deal with increasingly complex events

 HL LHC with ~200 interactions per crossing

- The CMS experiment is addressing this with stacked sensor arrays to distinguish low from moderate momentum tracks
- Can we do this in a single sensor?
- Muon collider experiments with <u>huge</u> decay backgrounds
 - Muon collider studies use timing fall x 100 short
 - Backgrounds are from various absorber surfaces/angles
 - We can use the pattern of electrode signals to distinguish between signal and background tracks signatures
- To get a feeling for this we use a 25 micron pitch electrode geometry in a \sim 300 micron thick sensor.

Charge Motion Visualization

30 degree track, n on n, maximum field at bottom.

Time resolution and Pattern Recognition

Long drift

- some collected charge
- dominated by induced current
- difficult to measure secondary peak
 Medium drift
- Dominated by collected charge
 Short drift
- collected charge similar to induced current
- Induced and collected signals merge

b

A look at angular resolution

- To try to get a feeling for what time and pulse height resolution is needed we look at 10 and 20 degree tracks
- 1 nanosecond rise time is assumed
- Lowest threshold defines time resolution and provides induced current t0
- Other thresholds provide time structure and shape of secondary peak

Time over Threshold

- This simple case seems to work, time stamps reflect pulse shape
- Slope indicates difference in charge drift among electrodes
- Clear cutoff in signal for 10 degree track
- Consistent start times (particle impact at 1 ns)

Comments

Patterns of hits on pixels in "thick" detectors can provide a wealth of information - but the devil is in the details

- S/N and bandwidth are crucial
 - Information is in the first 10 ns
- This means power

$$\sigma_t \sim \frac{C_L}{\sqrt{g_m t_a}} \frac{\sqrt{t_a^2 + t_d^2}}{Signal}$$

$$f \sim \mathbf{g}_m \qquad \mathbf{g}_m \sim \mathbf{I}_d$$

- The more information about the waveforms the better
 - Time over Threshold (TOT) with multiple threshold points
 - Requires transresistance amplifier
- Simple diode arrays are more radiation hard than LGADs, but radiation will affect internal fields and charge collection
- We also need to process and transmit that information this implies "intelligent" pixels where the information in a field of pixels can be processed and decisions made

More Work (for someone ...)

This work is very much at a conceptual stage Details will need to be understood to validate the concept a

Details will need to be understood to validate the concept and understand it's range of application

To Do:

- Define an overall toy->serious algorithm
- What is the angular resolution as a function of bandwidth?
- How do Landau fluctuations affect the reconstruction?
- What is the overall time resolution?
- Implement a realistic transimpedance amplifier in 65 nm and access power requirements
- Re-acquire hybrid bonding technology for sensor/readout integration
- Access optimal detector thickness and depletion fields

Build something

Prospects

Fast timing in small pixels and thin detectors - most technologies have been demonstrated

- Thin sensors (8" wafers)
- Time of arrival (demonstrated with LGADs)
- fine pitch bonding (3D hybrid bonding)
- Chip to wafer bonding (dead regions?)
 The use of induced currents
- Small signal/noise, large bandwidth
- Power consumption
- Assembly geometry and size
- Data processing intelligent pixels to select hits around a central core
- Data bandwidth

Vendors - The basic hybrid bonding technology is now licensed to several foundries (inc MIT-LL, Sandia, IZM), used in cell phone cameras many

🚰 Fermilab

Conclusions

I have discussed some possible applications of small pixels enabled by emerging technologies.

- It is one way of addressing some of the extreme challenges of future experiments (FCC, Muon Collider, EIC ...)
 - Fast timing
 - Radiation hard
 - Complex event topologies
- I have presented toy models without engineering detail
- To do more, a specific application and real engineering is needed
 - What power is needed? Cooling mass? Support geometry
 - Amplifier/discriminator design
 - Design of the digital tiers
 - Area to be deployed? Coverage? Cost? What Experiment?

Intogrator Circuit

‡ Fermilab

Implementation

Time resolution of a thick detector

• We use the TCAD/SPICE simulation chain to model an x-ray in the thicker detector going into a 65nm charge sensitive amplifier

TSV Test Structure

Pixel Capacitance

A detector with low capacitance can provide excellent time resolution:

$$\frac{\sigma_{t,pixel}}{\sigma_{t,LGAD}} \sim \frac{C_{pixel}}{C_{LGAD}} \times \frac{1}{Gain_{LGAD}} \ge 10^2 \times \frac{1}{20} \sim 5$$

Before this improvement is realized other effects will dominate including charge deposition variations. Power considerations will limit frontend current which will reduce transistor transductance

$$\sigma_t \sim \frac{1}{\sqrt{g_m}}, \quad g_m \sim I_d^{\alpha} (\alpha \sim 1)$$

However with "spare" margin we can become more adventurous

TCAD Simulation

Hybrid Bonding Vendors (2019)

Vendor	Wafer Diam	Wafer-Wafer	Die-Wafer	TSV
Sony				-
NHanced	8"	\checkmark	\checkmark	~1 u <i>m</i> ?
Teledyne Dalsa	6", 8"	\checkmark		~5 u <i>m</i>
Sandia	6''->8''	developing	\checkmark	no
IZM	12"	\checkmark	no	~5 u <i>m</i>
Raytheon	8"	\checkmark		-

