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Introduction

There has been increasing interest in fast timing as well as “intelligent” 
detector systems.  I would like to present some ideas for alternate designs of 
such systems looking at how technology for silicon-based detectors might 
evolve. This is a talk about the future - next generation of collider experiments.

We focus on capability enabled by new technologies that provide small pixels 
with low capacitance and sophisticated processing
• 3D integration of sensors and electronics
• Monolithic active devices
• Semiconductor substrate engineering
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Some Basics - time resolution

• The rule of thumb for the time resolution of a system dominated by jitter is: 
 
 
 
 
 

• slew rate (dV/dt) is related to the inverse amplifier rise time, CL is the load 
capacitance td and ta are the detector and amplifier rise times and gm is the 
input transistor transductance - related to input current, and A is a 
characteristic of the amplifier. 
• Fast timing -> large S/N, fast amp, small load capacitance
• There are tradeoffs available
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More Basics - Signal Development
• Signal induced by moving charges 

depends on work done by circuit. The 
charge induced on an electrode depends 
on the coupling between the moving 
charge and the electrode (Ramo’s 
theorem)
• We usually work with simple parallel plate 

systems
• In a multi-electrode system the induced 

current on an electrode depends on the 
velocity of the charge and the value of the 
effective “weighting” field
• Weighting field is calculated with 1 V on 

measuring elected, 0 V on others
• There are fast transient induced currents 

on neighbor electrodes that integrate to 
zero - can we use them? 
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3D Integration and small pixels

Fermilab has been involved the development of 
3D sensor/ASIC integration for almost a 
decade and have demonstrated (with industrial 
partners):
• Hybrid bonding technology 
• Oxide bonding with imbedded metal 

through silicon vias (TSV)
• Bond pitch of 4 microns
• First 3-tier electronics-sensor stack
• Small pixels with ADC, TDC (24 microns)
• Small TSV capacitance (~7 ff)
• The noise in hybrid bonded VIPIC 3D 

assembly is almost a factor of two lower 
than the equivalent conventionally bump  
bonded parts due to lower Cload

5
0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

25" 30" 35" 40" 45" 50" 55" 60" 65"

Co
un

ts
'

noise'(electrons)'

Unbonded"

Bump"bonded"

Fusion"Bonded"

.5	mm	
sensor
(BNL)

34	micron	
high	2-tier	
VICTR	chip



12/10/2019 Ronald Lipton

Methodology

We explore simple systems with various pixel 
sizes, detector thickness and pulse shapes
• Build a (Silvaco) TCAD (2D or 3D) detector 

model
• Inject a Qtot=4 fc pulse
• Extract the capacitance and pulse shapes at 

the electrodes
• Inject the resulting pulse into a SPICE model 

of a generic 65nm charge sensitive amplifier 
including noise

• Analyze the characteristics of the  
resulting output pulses

• For angled track studies I use simple op amp 
with defined bandwidth model with adjustable 
bandwidth
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Simple Example - X-Rays
Suppose an application requires fast timing on high 
energy x-rays
• Usually we would like thin detectors for fast timing, 

but thin detectors imply low efficiency - can we use 
induced currents to achieve time resolution in a 
thick detector? 
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Pulse Shapes - 200 micron detector Χ-ray 2D Simulation
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Timing histogram

E1

X-Ray With Noise at 185/200 micron depth
• Apply a constant threshold of E1~10 mV, E4~130 mV
• Tabulate time at threshold crossing including noise
• Edge pixel can provide a “start” time stamp if needed
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Example - MIP in a 50 micron Detector
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Comments

The 20-30 ps resolution will be degraded in a real system
However:
• All pixels with spacing small compared to depth will have similar signals ~ 16 

pixels for a 25x200 micron sensor x 4 in (uncorrelated) time resolution 
• The central pixel will see a large signal within a few ns of the leading edge - 

initial thresholds can be set low and signals latched only if a central pixel 
fires at a higher threshold

• The pattern of pixels will provide depth and slope information
• Multiple thresholds or more sophisticated processing can give a time walk 

correction
• These results are for n-on-p with maximum field at the top. n-on-n sensors 

have a maximum field at the bottom. The field profiles can be adjusted to suit 
the application by varying the applied bias
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Pattern Recognition

Collider based experiments have to  
deal with increasingly complex events
• HL LHC with ~200 interactions per  

crossing
• The CMS experiment is addressing this with stacked sensor arrays to 

distinguish low from moderate momentum tracks
• Can we do this in a single sensor?

• Muon collider experiments with huge decay backgrounds
• Muon collider studies use timing - fall x 100 short
• Backgrounds are from various absorber surfaces/angles
• We can use the pattern of electrode signals to distinguish between 

signal and background tracks signatures
To get a feeling for this we use a 25 micron pitch electrode geometry in a 
~300 micron thick sensor.
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Charge Motion Visualization
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MIPs at various angles
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Time resolution and Pattern Recognition
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A look at angular resolution
• To try to get a feeling for what time and pulse 

height resolution is needed we look at 10 and 20 
degree tracks

• 1 nanosecond rise time is assumed
• Lowest threshold defines time resolution and 

provides induced  
current t0

• Other thresholds provide time structure and shape 
of secondary peak
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Time over Threshold
• This simple case seems to work, time stamps reflect pulse shape
• Slope indicates difference in charge drift among electrodes
• Clear cutoff in signal for 10 degree track
• Consistent start times (particle impact at 1 ns)
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Comments

Patterns of hits on pixels in “thick” detectors can provide a wealth of 
information - but the devil is in the details
• S/N and bandwidth are crucial
• Information is in the first 10 ns
• This means power 
•  The more information about the waveforms the better
• Time over Threshold (TOT) with multiple threshold points
• Requires transresistance amplifier

• Simple diode arrays are more radiation hard than LGADs, but radiation will 
affect internal fields and charge collection 

• We also need to process and transmit that information - this implies 
“intelligent” pixels where the information in a field of pixels can be 
processed and decisions made
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More Work (for someone …)

This work is very much at a conceptual stage
Details will need to be understood to validate the concept and understand it’s 
range of application 

To Do: 
• Define an overall toy->serious algorithm
• What is the angular resolution as a function of bandwidth?
• How do Landau fluctuations affect the reconstruction?
• What is the overall time resolution?
• Implement a realistic transimpedance amplifier in 65 nm and access power 

requirements
• Re-acquire hybrid bonding technology for sensor/readout integration
• Access optimal detector thickness and depletion fields

Build something
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Prospects

Fast timing in small pixels and thin detectors - most technologies have been 
demonstrated
• Thin sensors (8” wafers)
• Time of arrival (demonstrated with LGADs)
• fine pitch bonding (3D hybrid bonding)
• Chip to wafer bonding (dead regions?)
The use of induced currents
• Small signal/noise, large bandwidth
• Power consumption
• Assembly geometry and size
• Data processing - intelligent pixels to  

select hits around a central core
• Data bandwidth

Vendors - The basic hybrid bonding technology is now licensed to several 
foundries (inc MIT-LL, Sandia, IZM), used in cell phone cameras many 
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Conclusions

I have discussed some possible applications of small pixels enabled by 
emerging technologies.
• It is one way of addressing some of the extreme challenges of future 

experiments (FCC, Muon Collider, EIC …)
• Fast timing
• Radiation hard
• Complex event topologies 
• I have presented toy models without engineering detail
To do more, a specific application and real engineering is needed
• What power is needed? Cooling mass? Support geometry
• Amplifier/discriminator design
• Design of the digital tiers
• Area to be deployed? Coverage? Cost? - What Experiment?
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Chip to Wafer
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Integrator Circuit
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Implementation
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Time resolution of a thick detector

• We use the TCAD/SPICE simulation chain to model an x-ray in the thicker 
detector going into a 65nm  charge sensitive amplifier
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Electrode	1	– small	pulse,	 but	fast	rise
Deposit	at	Z=185	– note	scales	are	not	equal

Electrode	3	– Deposit	at	Z=25

Edge pixel
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Pixel Capacitance

A detector with low capacitance can provide 
excellent time resolution: 

 
 
Before this improvement is realized other effects 
will dominate including charge deposition 
variations. Power considerations will limit front-
end current which will reduce transistor 
transductance  
 
 
 
However with “spare” margin we can become 
more adventurous

26

y	=	2E-18x2 +	1E-16x	+	1E-15

0

5E-15 

1E-14 

1.5E-14 

2E-14 

2.5E-14 

3E-14 

0 20 40 60 80 100 120

200	Micron	Thick	Detector

Farads/m
icron

σ t ,pixel

σ t ,LGAD

∼
Cpixel

CLGAD

× 1
GainLGAD

≥102 × 1
20
∼ 5

σ t ∼
1
gm
, gm ∼ Id

α
(α ~ 1)

TCAD Simulation

TSV Test Structure

Pixel Pitch (microns)

C
ap

ac
ita

nc
e 

(fa
ra

ds
)



12/10/2019 Ronald Lipton

Hybrid Bonding Vendors (2019)
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Vendor Wafer Diam Wafer-Wafer Die-Wafer TSV

Sony -

NHanced 8” ✓ ✓ ~1 um?

Teledyne Dalsa 6”, 8” ✓ ~5 um

Sandia 6”->8” developing ✓ no

IZM 12” ✓ no ~5 um

Raytheon 8” ✓ -


