LiquidO: an introduction

Ś

J. Pedro Ochoa-Ricoux* University of California at Irvine

** for the LiquidO collaboration*

CPAD Workshop Madison, WI, December 2019

A new approach!

- Liquid Scintillator (LS) detectors have been a workhorse in neutrino physics

- Conventional strategy: propagate light through the scintillator to surrounding photosensors
- LiquidO is a departure from the conventional paradigm with **two main features**:

1) Use of an opaque scintillator

Main purpose: stochastically confine light near its creation point, to preserve the precious topological information of particle interactions

A new and completely counterintuitive approach!

The right opaque scintillator for LiquidO: short scattering length and moderate absorption length

More like milk than like dark beer!

A new approach!

SiPMs are a great choice to readout the fibers (low background, high efficiency, ~0.1 ns time resolution)

 LiquidO relies on well-understood, commercially available and relatively inexpensive technology!

Imaging down to the MeV scale!

Geant4 simulation of 1 MeV positron in a LiquidO detector with fibers running along z direction with a 1 cm pitch. The scintillator has a 5 mm scattering length. Each pixel corresponds to a fiber. The color scale shows all **true hits per fiber**

A self-segmenting detector! (no need to introduce dead material)

LiquidO's power

X[cm] X[cm] -20 20 -20 20 - Can distinguish ~MeV gammas, 40 40 Y[cm] Electron Gamma electrons and positrons on an individual basis unprecedented! O -40 -40 Can achieve electron separation from Hits per Fibre gammas with efficiency > 85% and 10 100 800 contamination ~10-3 -80 -80 - Additional major advantages: x [cm] (b) -50 50 Positron Unparalleled affinity for loading Essentially 50 impossible to Plenty of room to explore unconventional separate these [cm] scintillators (e.g. ultra high light-yield) not three on an eventdeemed transparent enough for by-event basis in conventional detectors conventional Liquid Scintillator Hits per Fibre detectors! -50 (Both events at the top are 2 MeV; simulation 10 100 details are the same as in previous page)

Diffusive Medium

First papers

More information about LiquidO can be found in <u>arXiv:1908:02859</u> and arXiv:1908.03334

inst PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAR Neutrino Physics with an Opaque Detector RECEIVED: August 12, 2019 REVISED: September 30, 2019 ACCEPTED: October 21, 2019 PUBLISHED: November 5, 2019 A. Cabrera^{*1,9,10}, A. Abusleme¹⁵, J. dos Anjos^{†3}, T. J. C. Bezerra¹⁸, M. Bongrand⁹, C. Bourgeois⁹, D. Breton⁹, C. Buck¹², J. Busto⁵, E. Calvo⁵, E. Chauveau⁴, M. Chen¹⁶, P. Chimenti¹¹, F. Dal Corso¹³, G. De Conto¹¹, S. Dusin¹³, G. Fiorentini^{ra,7b}, C. Frigerio Martins¹¹, A. Givaudan¹, P. Govon^{2a,2b}, B. Gramlich¹², M. Grassi^{1,9}, Y. Han^{1,9} J. Hartnell¹⁹, C. Hugon⁶, S. Jiménez⁵, H. de Kerret^{‡1}, A. Le Nevé⁹, P. Loaiza⁹, J. Maalmi⁹, F. Mantovani^{7a,7h} L. Manzanillas⁹, C. Marquet⁴, J. Martino¹⁸, D. Navas⁵, H. Nunokawa¹⁴, M. Obolensky¹, J. P. Ochoa-Ricoux^{8,15} G. Ortona²⁰, C. Palomares⁵, F. Pessina¹⁴, A. Pin⁴, M. S. Pravikoff⁴, M. Roche⁴, B. Roskovec⁸, N. Roy⁹, C. Santos¹ 20 N A. Serafini^{7a,7b}, L. Simard⁹, M. Sisti^{2a,2b}, L. Stanco¹³, V. Strati^{7a,7b}, J.-S. Stutzmann¹⁸, F. Suekane^{*§1,17}, A. Verdugo⁵, B. Viaud¹⁸, C. Volpe¹, C. Vrignon¹, S. Wagner¹, and F. Yermia¹⁸ 0 Novel opaque scintillator for neutrino detection Aug ~40 scientists ¹APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205 Paris Cedex 13, France \vdash ^{2a}Università di Milano-Bicocca, I-20126 Milano, Italy 6 ^{2b}INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy ³Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, RJ, 22290-180, Brazil from Europe, [physics.ins-det] Ч ⁴CENBG, UMR5797, Université de Bordeaux, CNRS/IN2P3, F-33170, Gradignan, France C. Buck.¹ B. Gramlich and S. Schoppmann ⁵CIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain HZ ⁶Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France Max-Planck-Institut für Kernphysik, ^{7a}Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy Saupfercheckweg 1, 69117 Heidelberg, Germany Asia and the ^{7b}INFN, Ferrara Section, Via Saragat 1, 44122 Ferrara, Italy S E-mail: christian.buck@mpi-hd.mpg.de ⁸Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA н ⁹LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France ¹⁰LNCA Underground Laboratory, CNRS/IN2P3 - CEA, Chooz, France **Americas** ABSTRACT: There is rising interest in organic scintillators with low scattering length for future ¹¹Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina - PR, Brazil neutrino detectors. Therefore, a new scintillator system was developed based on admixtures of ¹²Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany paraffin wax in linear alkyl benzene. The transparency and viscosity of this gel-like material can ¹³INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy be tuned by temperature adjustment. Whereas it is a colorless transparent liquid at temperatures ¹⁴Department of Physics, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil currently around 40°C, it has a milky wax structure below 20°C. The production and properties of such a ¹⁵Pontificia Universidad Católica de Chile, Santiago, Chile Р ¹⁶Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L3N6, Canada scintillator as well as its advantages compared to transparent liquids are described. ¹⁷RCNS, Tohoku University, 6-3 AzaAoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan \square working on ¹⁸SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307 Nantes, France KEYWORDS: Detector design and construction technologies and materials: Neutrino detectors \vdash ¹⁹Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ²⁰INFN, Sezione di Torino, I-10125 Torino, Italy 0 0 **LiquidO** ARXIV EPRINT: 1908.03334 August 9, 2019 \sim The discovery of the neutrino by Reines & Cowan in 1956 revolutionised our understanding of the uni-bin demontal level and provided a with the conventional paradigm of damage is a serie of the series of the seri new probe with which to explore the cosmos. Fur- bres. The principles behind LiquidO's detection techthermore, it laid the groundwork for one of the most nique and the results of the first experimental validasuccessful and widely used neutrino detection tech- tion are presented. The LiquidO technique provides nologies to date: the liquid scintillator detector. In high-resolution imaging that enables highly efficient these detectors, the light produced by particle inter- identification of individual particles event-by-event. actions propagates across transparent scintillator vol- Additionally, the exploitation of an opaque medium 1Corresponding author umes to surrounding photo-sensors. This article in- gives LiquidO natural affinity for using dopants at untroduces a new approach, called LiquidO, that breaks precedented levels. With these and other capabilities, LiquidO has the potential to unlock new opportuni-*Contact: anatael@in2p3.fr and suekane@awa.tohoku.ac.jp. ties in neutrino physics, some of which are discussed [†]Also at Observatório Nacional. Rio de Janeiro, Brasil [‡]Deceased. here. © 2019 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/14/11/P1100 [§]Blaise Paschal Chaire Fellow

5

1908.02859v1

1

(see also seminar at CERN: https://indico.cern.ch/event/823865/)

6

Physics Potential

- LiquidO's capabilities open up a realm of possibilities in many areas of neutrino physics. Here I highlight a few:
 - Search for neutrinoless double-beta decay (0vββ):

Key advantages: background control and ability to load well beyond current limits

Looks like a very promising path for reaching deep into the normal ordering region!

ββ Example Event

10³

10²

10

- Solar neutrinos:

Expect good performance "as is"

Exciting possibility: Indium loading could allow to use the reaction first proposed by Raghavan in 1976 to do *pp* solar neutrino physics

$$v_e + {}^{115} \text{In} \rightarrow {}^{115} \text{Sn}^* + e^-$$

 $\downarrow \gamma + \beta$
 $\gamma + \gamma$

Physics Potential

- Supernova neutrinos:

- Low energy threshold (~0.1 MeV)
- Channels not accessible with other detectors
- Charge sign ID (e+/e-)
- Directionality information for events ≥ 10 MeV
- Sensitivity to Diffuse Supernova Neutrino Background

- Search for nucleon decay:

- Can see *all* channels
- Largest achievable **density of free protons** (thanks to scintillator)
- Very high-efficiency
- Full topological information and sign-ID for some channels through final Michel electron
- Others (geoneutrinos, reactor antineutrinos... etc)

LiquidO can also do beam physics!

- LiquidO would reveal GeV-neutrino interactions in **extremely powerful** way:

Publications about LiquidO's physics potential are in preparation!

Does it work?

- A first-principles validation of LiquidO has already been accomplished in the laboratory:

Observed stochastic confinement of the light with the opaque sample! (see <u>arXiv:1908.02859</u> for more details)

Status of R&D

- R&D well advanced in terms of detector, mechanics, optical readout & scintillator:

- We are about to commission a 7.5 liter prototype called "Mini-LiquidO"
- In parallel, working towards a multi-ton demonstrator detector

Summary & Conclusions

- LiquidO is an innovative neutrino detection technology that exploits the power in opaque scintillators for the first time
- LiquidO builds on successes of mainstream scintillator detectors but brings unprecedented capabilities to the table. For instance:
 - Beautiful imaging from the GeV scale down to the MeV scale
 - Unparalleled doping ability
- LiquidO could have a very strong impact in many areas of neutrino physics:
 - The parameter space is very wide, and LiquidO can be optimized for many different energies and physics goals
 - Plenty of uncharted territory to explore (unprecedented doping levels, unconventional scintillators... etc)
- LiquidO still in early stages, but R&D progressing rapidly and steadily:
 - Proof-of-principle already obtained, and working towards a multi-ton demonstrator

We have only scratched the surface so far... stay tuned!!