

Develop Radiation Hard Beam Monitor and Muon Spectroscopy by using Machine Learning for Intense Neutrino Target System Katsuya Yonehara CPAD Workshop 12/08/2019

Fermilab Intensity Upgrade Plan

- NuMI-AIP (Neutrinos at the Main Injector Accelerator Improvement Plan)
 - Upgrade existing Fermilab accelerator complex with the same footprint to increase proton beam intensity on the NuMI target from 780 kW to > 900 kW
 - Machine operation starts from 2020
- LBNF (Long Baseline Neutrino Facility)
 - Apply PIP-II SRF Linear Accelerator to send 1.2 MW beam to the LBNF target
 - Machine operation will start from 2029
 - Extend to PIP-III SRF Linac to reach 2.4 MW beam power
 - Operation year TBD

Fermilab Accelerator Complex

Main Injector and Recycler

Protons Neutrinos Muons Targets R&D Areas

Beam Monitor for multi-MW Target System

- Tolerance of the target parameter at LBNF
 - Tighter than NuMI

🛠 Fermilab

- Beam monitor is a real-time (spill-by-spill) detector to check quality of multi-MW target system
 - High reliability and long lifetime (rad hard) required

Develop Rad-Hard Beam Monitor System

Beam Monitor for Beam Based Alignment

- Target beam elements were occasionally displaced or broken by various incidents
 - Radiation damage, thermal expansion, thermal shock, water leak, Helium gas leak, etc
- Beam based alignment permits us to find baffle, target and horn positions w.r.t. the BPM coordinate by using beam monitors
- Position resolution less than 0.2 mm is achieved

Upgrade Beam Monitor for 1-MW operation

- Develop rad-hard ionization chamber
- Observed signal gain change by varying He gas quality
 - Calibration chamber can calibrate the gain change due to gas quality, but this is not the perfect solution
 - Apply a new gas system
 - Density flow control by using PLC
 - Add bubbler on the outlet of HM to avoid backflow
- Use a radiation hard material
 - Apply radiation hard ceramics for insulator and cable
- Optimize the dimension of monitor system
 - Beam profile simulation
 - Space charge simulation

Particle Tracking in Simulation

Shows Aberration of horns

Proton beam spot size 1.5 mm

Beam profile on hadron monitor

Alternate Hadron Monitor

- RF beam detector
- Conceptually new rad-hard beam detector
- Apply RF field to measure the amount of ionization gas plasma which is proportional to the intensity of charged particles passing through a RF cavity by measuring gas permittivity change $\varepsilon = \varepsilon_r + i\varepsilon_i$
- Proof-of-principle test was carried out by using the Main Injector 120 GeV
 proton beam
 Beam intensity = 1.3e13

Cavity body Waveguide Charged particles

Five peaks during the beam on shows the gap of six MI beam batches

Linearity of RF beam detector

🞝 Fermilab

Muon Monitor

• Three monitor receive different energy muons

 Similar structure as Hadron monitor Muon Monitor 1 signal

Systematic measurement

Horizontal scan

Strong linear correlation between primary proton beam and muon beam centroid on Muon Monitors

MM2 shows opposite slope from MM1 due to **Aberration of horns**

ab

Pion/Muon Spectroscopy

Magnetic horns have an analyzing power

Predicted Horn Current by using Machine Leaning $\vec{R}_{MM} = f(\vec{r}_{beam}, \vec{\sigma}_{r_{beam}}, I_{Horn}, gas parameter)$

Horn Current Error RMS = 0.152 kA

Predicted Beam centroid on Muon Monitor with ML

Summary

- Study three beam monitors
 - Demonstrate that beam monitors is capable to operate the target system within the design tolerance
 - Introduce Machine Learning to make an automatic monitor system
 - Study Pion/Muon spectroscopy by using aberration of horns
- Develop rad hard ion chamber for multi-MW target
 - New gas system to prevent gas contamination
 - Plan to simulation study to minimize space charge effect
 - Develop RF beam detector
 - Plan more R&D to make a practical detector

Acknowledgement

- Hadron Monitor
 - Karol Lang, Marek Proga from U of Texas Austin
 - Joe Beleski, Jodan Bohn from Fermilab
- RF beam detector
 - Rol Johnson, Mary Anne, Grigory Kazakevic from Muons Inc
 - Al Moretti, Dave Peterson, Adam, Dent, Kyle from Fermilab
- Muon Monitor
 - Pavel Snopok, Yiding Yu from IIT
 - Amit Bashyal from Oregon U
 - Athula Wickremasinghe from Fermilab
- TSD
 - Bob Zwaska, Jim Hylen, Cory Crowley, Yun He, Keith Gollwitzer, Kris Anderson, Patrick Hurh

