The Dichroicon: Spectral Photon Sorting For Large-Scale Cherenkov and Scintillation Detectors

Tanner Kaptanoglu

December 2019

Goal:

Provide Photon Wavelength Information for Large-Scale Neutrino Detectors

For water/ice Cherenkov detectors the scale of Hyper-K or Icecube, dispersion can spread photon arrival times by > 2 ns. Measuring time between long and short wavelength photons provides information about event position

For scintillator or water-based scintillator detectors, measuring wavelength provides information about the process that created the photon (Cherenkov or scintillation)

Cherenkov Light in a Liquid Scintillator Detector

- Charged particle traveling through liquid scintillator creates *both* scintillation (~10,000 photons/MeV) and Cherenkov light (~100 photons/MeV)
- Challenge is to detect the Cherenkov light, which provides the direction of the traveling particle. Typically use *timing* and *directionality*.
- High light yield from scintillator provides excellent energy and position resolution and low energy thresholds
- Cherenkov light allows one to reconstruct direction, improve particle ID
- Many applications towards future experiments: Neutrinoless double beta decay, low energy solar neutrinos, reactor and geo antineutrinos, atmospheric neutrinos, long baseline physics

Example timing in large neutrino detector

Cherenkov ring on top of isotropic scintillation light

sensitivity (%)

CNO

25° angular resolution 35° angular resolution

15° angular resolution

55° angular resolution

Eur. Phys. J. C (2018) 78:435

3.5

Scintillation fraction (%

CNO sensitivity increases with improved direction reconstruction

Ongoing R&D for Cherenkov / Scintillation Separation

Only timing and isotropy used to identify the Cherenkov light.

Ongoing R&D for Cherenkov / Scintillation Separation

Only timing and isotropy used to identify the Cherenkov light.

Separating Cherenkov and Scintillation Light Using Wavelength

Goal is to achieve Cherenkov and scintillation separation while losing as few total photons as possible.

Advantages of Long-Wavelength Light

- Raleigh scattering length and absorption length increase with wavelength → the longer wavelength Cherenkov light maintains its directionality
- Simulations of KamLAND-like detector showed ability to separate Cherenkov and scintillation using red-sensitive photocathodes and fast-timing
- In even larger detectors, chromatic dispersion starts to help separate the components further

Combining Two Technologies

Winston Cones

https://arxiv.org/pdf/physics/0310076.pdf

Dichroic Filters

Wavelength

Complementary to WbLS, slow scintillator, fast photdetectors, etc.

Spectral Sorting with Dichroic Filters

Spectral Sorting with Dichroic Filters

Photon sorting allows Cherenkov and scintillation separation with high efficiency collection of scintillation light

First demonstration of Cherenkov / scintillation separation using large-area PMT!

T. Kaptanoglu, Nucl. Instrum. Meth. A889 (2018) 69-77 T. Kaptanoglu, M. Luo, J. Klein, JINST 14 no. 05 T05001 (2019)

Bench-Top Setup

3D Printed Filter Holder

Custom cut shortpass filters from Knight Optical to fill out full 3D printed design

High performance short-pass dichroic filters from Edmund Optics

Custom cut longpass filter from Knight Optical to fit the aperture

R1408 8" PMT detects light through barrel of dichroicon, equipped with 500 nm shortpass filters

• Aperture PMTs placed behind 500 nm dichroic longpass filter

R7600-U20

Dichroicon Data with a Cherenkov Source

Dichroicon Data with a LAB+PPO Target

- Total Cherenkov light collected (extracted from the fit) is consistent with Cherenkov source data
- Purity of Cherenkov light in prompt window > 90%

Simultaneous Detection of Cherenkov and Scintillation Light

Dichroicon Data with an Alpha Source

Dichroicon Data with Liquid Scintillator Targets and Two Different Central Dichroic Filters

Filters used in the dichroicon should be carefully based on detector and target material. Detailed study ongoing using Chroma and RAT-PAC.

Simulation Models of Bench-top Setup

Dichroicon Simulations

420 nm Photons

80

60

40

20

0

-20

-40

-60

-80

80

60

40

20

0

-20

-40

-60

-80

80

60

40

20

0

-20

-40

-60

-80

-50

Z (mm)

-50

Z (mm)

Cher PMT

0

X (mm)

Cher PMT

0

X (mm)

50

50

Z (mm)

B. Land

500 nm Photons

550 nm Photons

Simulations of Large-Scale Detectors With Dichroicons

B. Land, Chroma

Simulations of Large-Scale Detectors With Dichroicons

Conclusions

- Spectral sorting of photons has interesting applications for future large-scale water Cherenkov and scintillator detectors, with the potential to improve reconstruction and particle ID
- Bench-top measurements of single dichroic filter demonstrated photon-sorting technique
- Dichroicon with a Cherenkov source showed photon sorting working as expected
- Dichroicon with a scintillation source demonstrated Cherenkov / scintillation separation
- Lots of interesting measurements and simulations forthcoming with dichroicons

Work supported by Department of Energy Office of High Energy Physics Advanced Detector R&D

Backup Slides

Future Experiments

- Several proposed WbLS detectors hoping to achieve Cherenkov and scintillation separation
- THEIA is a proposed 50kT WbLS (or equivalent technology) detector, potentially complimentary to DUNE
- ANNIE is 26-ton water-based detector measuring neutrino-nucleus interactions. Future phases will likely include LAPPDs and WbLS
- WATCHMAN hot-bed for future technologies WbLS, LAPPDs, fast PMTs, *dichroicons*

Cherenkov / Scintillation Separation With Bandpass Filters

Using a set of bandpass filters to span emission spectrum of LAB+PPO

Center (nm)	FWHM (nm)	Peak Transmission (%)
355	10	95
387	11	95
405	10	96
430	10	46
450	10	98
470	10	53
494	20	95
510	10	60
530	10	54

R7600-U200 PMTs

Fitting the Spectrum

$$F = C \times f_{PMT}(t - t') + (1 - C) \times \sum_{i=1}^{2} \frac{A_i \times (e^{-t/\tau_i} - e^{-t/\tau_R})}{(\tau_i - \tau_R)} * f_{PMT}(t - t')$$

Measuring T(λ , θ) and R(λ , θ)

Characterized the transmission and reflection of the dichroic filters as a function of wavelength and incident angle in to ways

Measurements for a 500 nm Longpass Dichroic Filter

Measurements for a 500 nm Longpass Dichroic Filter

Using a spectrometer to measure transmission as function of wavelength and incident angle

