"Summary" : SC/Quantum detectors 2 hr 45m

3 hr 30m

Sun 08	3/12 Mon 09/12 Tue 10/	12 All days	>	< Sun 08	3/12 Mon 09/12	Tue 10/12 All days		>
		🕒 Print 🛛 Full s	creen Filter				🛛 🕒 Print 🔤 Fu	ll screen Filter
15:00				09:00	High-performance n	nultilayer optical haloscop	e for a dark photon search	Dr. Jeffrey CHILES
					Hall of Ideas I, Monon	a Terrace Convention Center		09:00 - 09:20
	MKIDs for CMB		Adam ANDERSON 📋		Superconducting na strong magnetic fiel		ctors and their performance in	Mr. Tomas POLAKOVIC
	Hall of Ideas I, Monona Terrace Convention Center		15:30 - 15:50		Nanowire Detection	of Photons from the Dark	Side	Dr. Ilya CHARAEV
16:00	MKIDs and microwave spectrometry						Side	
16:00	Hall of Ideas I, Monona Terrace Convention Center MKIDs for Visible and Near IR Wavelengths		15:50 - 16:10		· · ·	a Terrace Convention Center		09:35 - 09:50
			Ben MAZIN 📄	10:00	infrared	inowire Single Photon Dete	ectors: Applications from the UV	to mid- Dr. Varun VERMA
	Hall of Ideas I, Monona Terrace C	of Ideas I, Monona Terrace Convention Center						
	evelopment of Large Scale CMB Detector Arrays at Argonne		Tom CECIL 🗎		Progress Towards S	ub-eV Energy Thresholds v	with SuperCDMS Detectors	Dr. Noah KURINSKY
	Hall of Ideas I, Monona Terrace C	onvention Center	16:30 - 16:50		Hall of Ideas I, Monon	a Terrace Convention Center		10:05 - 10:25
	Readout for Multiplexed Supe	adout for Multiplexed Superconducting detectors			Superconducting mi axion detection	crowave resonator in a str	rong magnetic field for dark mat	tter Dr. Woohyun CHUNG
17:00	Hall of Ideas I, Monona Terrace C	onvention Center	16:50 - 17:10					
		plexed TES Readout For Low Background	Dr. Ouellet JONATHAN 📄					
	Calorimeters			11:00	Microwave Photon C	Counting with Josephson J	unctions	Prof. Robert MCDERMOTT
	Fundamental Cosmology with Next-Generation Superconducting Millimeter-Wave Spectrometers		Dr. Kirit KARKARE		Hall of Ideas I, Monon	a Terrace Convention Center		11:00 - 11:20
					Superconducting Qu	bits for an Axion Search		Akash DIXIT
	Superconducting Nanowire Single Photon Detectors For Optical Communication, QIS, and Fundamental Science		Matthew SHAW		Hall of Ideas I, Monon	a Terrace Convention Center		11:20 - 11:40
					HeRALD: Dark Matte	er Direct Detection with Su	iperfluid 4He	Harold PINCKNEY
18:00	Skipper CCDs for Cosmologica	I Applications A	lex DRLICA-WAGNER 📄		Hall of Ideas I, Monon	a Terrace Convention Center		11:40 - 11:55
	Hall of Ideas I, Monona Terrace C	onvention Center	18:00 - 18:15	12:00	Dark Matter and Fur	ndamental Physics Searche	es using Atomic Magnetometers	Dr. Young JIn KIM 📄
				12.00	Hall of Ideas I, Monon	a Terrace Convention Center		11:55 - 12:10

two long days with detectors for astronomy, dark matter and neutrinos... and photo-detectors in genera: TES,SNSPDs, MKIDs

J.Estrada (fnal)

Transition Edge Sensors for CMB going BIG!

SPT-3G 16,260 detectors Dual-Pol, multi-chroic pixel Argonne

MOVING TOWARDS CMB-S4 Fabrication Facilities

17,500 sq. ft. - Class 100-1000 - Bay-and-chase design

K. Karkare : Line Intensity Mapping (with MKIDs)

Line intensity mapping white paper 1903.04496

Galaxy surveys become extremely expensive at high redshift, as identifying individual faint objects above a threshold becomes more difficult.

Cosmology at z > 3: Expansion History

Using baryon acoustic oscillations, characterize the expansion history in the pre-acceleration era to the same precision as low-z measurements

What kind of instrument do we need to measure cosmology / fundamental-physics with submm-IM?

- Background-limited narrow band detectors with resolving power R~hundreds
- Hundreds of pixel-years on a 10m-class submm telescope.

deployment in January 2020

1.002

3 dual-pol pixels R=300, covering 195-310 GHz

–0 P₂

spectrograph on a chip!

E. Shirokoff

-3

0.998

1.000

 $\Delta f / f$

MKIDs for optical and near IR B. Mazin

- 20 kpix PtSi MKID array for Subaru SCExAO-MEC
- 140x146 pixels
- 150 micron pixel pitch
- 22x22 mm imaging area
- Pixel Yield ~85%
- R≅10 at 1 micron

Array fabricated at UCSB by P. Szypryt and G. Coiffard.

Szypryt et al. 2017, Optics Express

20k channels of spectroscopy with R~10... at telescope

also for axion/dark photon -

improving resolution

G. Cancelo electronics needed for these highly multiplexed arrays of MKIDs and TES

J. Ouellet quantum devices (TWPA) to improve the performance of these highly multiplexed systems

Development	of Next Gen	eration Readouts
-------------	-------------	------------------

rf Multiplexing Readout

- Multiplexing based on rf SQUIDs
 Similar to HOLMES design
 - Multiplexing factors up to 100~1000s
 Carrier frequencies in the ~GHz range
- X Cannot use common TES bias line
 Need one bias line per TES
- Signals need to travel the ~meter distance between the TES and SQUID un-mixed
 - Low background wiring only needs to have ~100 kHz bandwidth
- X Magnetic flux & microphonics noise?
- TWPA final amplification stage
 Can achiever higher gain with SQL limited noise floor
- Being developed at MIT as a collaboration between CUPID+Ricochet groups
- Working with Lincoln Labs to design cold electronics
 Testing NIST & SLAC designed warm readout electronics
- No results yet, electronics are still being built

Appl. Phys. Lett 111 (24) 2017

13

A. Drilica-Wagner

Summary: Skipper CCDs for Cosmology

- The Skipper CCD pitch...
 - Skipper CCDs allow you to control readout noise directly on a pixel-by-pixel basis
 - Configurable per object and per exposure
 - Every CCD used for astronomical observations should be a Skipper CCD

non destructive readout with skipper-CCD could enhanced cosmological observations

M. Shaw started us on SNSPDs

Parameter	SOA 2019	SOA 2016	Group
Efficiency	98% @ 1550 nm	93% @ 1550	NIST
Dark Counts	< 1e-5 cps	< 0.1 cps	MIT
Energy	0.125 eV	0.250 eV	NIST/JPL/MIT
Timing Jitter	2.7 ps	16 ps	MIT/JPL/NIST
Active Area	0.92 mm ²	0.058 mm ²	NIST
Max Count Rate	1.2 Gcps	0.3 Gcps	JPL
Pixel Count	1024 (32x32)	64 (8x8)	NIST/JPL
Photon Number	1 from 2 or more	None	MIT
Operating Temp	4.3 K @ 1550	2.5 K @	Single Quantum

An SNSPD is simply a current-biased superconducting wire in parallel with a readout circuit.

5 With the current through the nanowire reduced, the hotspot cools off, returning the wire to its original state.

4 The current density surrounding the hotspot exceeds the critical curent, and the entire wire width goes normal. The current is redirected through the measurement circuit, creating a detectable voltage pulse. 2 When a photon hits the wire, it creates a hotspot, where a small region of the wire goes normal.

3 The current diverts around the hotspot.

after [1] Gol'tsman et al. (2001)

perhaps these guys are having too much fun...

NASA Deep Space Optical Communications (DSOC) Technical Demonstration Mission

Pre-Decisional Information -For Planning and Discussion Purposes Only

Psyche

spacecraft

Longest range demonstration of free-space laser communication by ~1000x

Demonstrating optical communications from deep space (0.1 - 2.7 AU) at rates up to 267 Mbps to validate:

- Link acquisition laser pointing control
- High photon efficiency signaling

Ground Laser Transmitter Table Mtn, CA 1 m OCTL telescope 5 kW laser power

Ground Laser Receiver Palomar Mtn, CA 5 m Hale telescope

downlink ,'

1550 nm

Optical Platform Assembly

22 cm mirror 4 W laser power

 1064 nm

 uplink

 Image: Image:

2018 California Institute of Technology. Government sponsorship acknowledged.

jpl.nasa.gov

J.Chiles SNSPD+haloscope

Detector for optical haloscope

- See Ilya Charaev's talk at 9:35 AM
- 400 x 400 um² detectors with 10⁻⁵ Hz dark count rate

a-Si

SiO₂

258 nm (Δ-25 nm)

562 nm (\$\Delta 13 nm)

547 nm (Δ-3 nm)

555 nm (Δ5 nm)

՝ 539 nm (Δ -10 nm

258 nm (Δ-25nm)

264 nm (Δ-19 nm)

273 nm (Δ-10 nm)

273 nm (Δ-10 nm)

large detectors low dark current!

I.Charaev the SNPD detectors for haloscope (impressive dark count rate!)

Dark-count experiment with optical haloscope

14115

T.Polakovic

SNSPDs in strong magnetic field

Developed a new technique for the fabrication of films that can operate in very high field.

V.Verma

Row-Column Readout for SNSPD Arrays

Developments in SNSPDs at NIST/JPL

- Kilopixel scale arrays, megapixel arrays have been fabricated and will be tested in coming weeks
- Readout technology needs further development to make these large-format arrays practical (cryo-CMOS, single-flux-quantum or other types of superconducting logic for low-temperature signal processing)
- Optimization for the mid-infrared (up to 10 μm)
- Optimization in the UV for integration with ion traps
- Potential for high energy physics experiments requiring high efficiency and timing resolution, but can tolerate small active areas

astronomy in the plans

10⁴

CAPP(Projected)

 10^{-1}

10⁰

10¹

RBF+UF

ADMX

dt

testec

R.McDermott

High-fidelity

Science 361,

1239 (2018)

counter-based

QB measurement

Josephson Photomultiplier (JPM)

QP Parity-based Detection of Transduced Photons

- Possible next-gen. axion detector (collaboration with A. Chou, FNAL)
- Accessible frequency range: 10 GHz to 10 THz

A. Dixit: qubits for single photon detection in Axion search.

Detected Photon Occupation vs Injected Photon Occupation

Doug Pinckney : HeRALD

Excitations in Superfluid 4He

Phys. Rev. D 100, 092007 Next Steps

Y.J.Kim dark matter search with atomic magnetometers

Kim, Chu, <u>Savukov</u>, Newman, *Nature Comm.* **10**, 2245 (2019)

recently published constraints