

CPAD Instrumentation Frontier Workshop

Madison, Wisconsin December 8-10, 2019

LGAD Prospects: Granularity and Repetition Rate

Bruce A. Schumm

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

UCSC Launchpad Initiative

HAMAMATSU PHOTON IS OUR BUSINESS

Outline of Talk

LGAD Granularity

- Current limitations and goals
- AC (AC-coupled) LGAD
- TI (Trench-Isolated) LGAD
- iLGAD (inverted junction structure)
- DJ (Deep-Junction) LGAD NEW!

Diode Detectors in High Frame-Rate Applications

Motivated by need for advanced accelerator diagnostics

Initial Application: CMS/ATLAS Timing Layers

 ATLAS HGTD
 Two layers (front and back of frame) on each side of IP

• Covers forward region 2.4<|η|<4.0

 Pixel dimension of 1.3x1.3mm²

Complementary instrument under design by CMS, with a more central coverage

Granularity and the JTE

JTE = Junction Termination Extension

Needed to avoid large fields and breakdown between segmented implants

Conventional LGAD Coverage Gaps

Smallest achievable gap (50% criterion) is ~30µm
Limits granularity to ~mm scale

12/09/2019

LGAD Granularity Wish List

4D tracking: relevant scale is ~50 μ m in r ϕ (e.g. ATLAS pixel layers)

X-Ray Imaging: again relevant scale is ~50 µm

e.g. Z. Wang, On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source, JINST 10, C12013 (2015).

Towards Higher LGAD Granularity

AC (AC-coupled) LGAD
TI (Trench-Isolated) LGAD
iLGAD (inverted junction structure)
DJ (Deep-Junction) LGAD

Approach 1: AC LGAD

The AC-coupled LGAD (AC-LGAD)

US patent No.: 9,613,993 B2, granted Apr. 4, 2017: "Segmented ACcoupled readout from continuous collection electrodes in semiconductor sensors" Hartmut Sadrozinski, Abraham Seiden (UC Santa Cruz), Nicolo Cartiglia (INFN Torino).

Since signal is AC-coupled, must integrate to 0

12/09/2019

AC LGAD: Response Envelope

- Pulsed laser measurements at SCIPP
- **Coordinates represent position of laser spot**
- Read-out channel is the illuminated channel

AC LGAD: Position Resolution

12/09/2019

AC LGAD: Timing and "Workplan"

> $amp(DUT) > 0.14 V and < 0.6 V \longrightarrow \sigma_{RSD} = 45ps$

Temporal resolution already approaching that of conventional LGADs (45ps vs 20ps)

Split table (with breakdown voltage)								
wafer	<i>n</i> -plus dose	<i>p</i> -gain dose	dielectric thickness	<i>p</i> -stop dose	substrate	Vbd		
1	А	0.92	L	В	Si-Si	480		
2	А	0.94	L	А	Si-Si	440		
3	А	0.94	L	В	Epi	460		
4	А	0.94	Н	В	Si-Si	440		
6	В	0.92	L	В	Epi	525		
7	В	0.94	L	А	Si-Si	460		
8	В	0.94	L	В	Si-Si	460		
10	В	0.96	Н	В	Si-Si	430		
11	С	0.92	L	В	Si-Si	515		
12	С	0.94	L	В	Epi	490		
13	С	0.94	L	В	Si-Si	465		
15	С	0.96	Н	С	Si-Si	445		

Parameter space currently under exploration

AC LGAD R&D Threads

- N⁺⁺ layer resistivity
- N⁺⁺ termination
- Signal coupling (dielectric width; pad fill-factor)
- Gain layer properties

- Timing resolution and signal-tonoise
- Point-spread function and cross talk
- Fabrication technique

12/09/2019

Approach 2: TI LGAD

Trench-Isolated ("TI") LGAD

- Straightforward idea: Avoid breakdown by interposing a physical barrier (trench) between semiconductor junction segments (implants)
- Trench of depth 1µm or less
- Filled with insulator (SiO)

Trench-Isolated LGADs (TI-LGAD)

- DC readout
- Patterned p-gain
- Compact isolation structure based on Deep Trench Isolation technology

- The trenches are a few microns deep and < 1um wide.
- Filled with Silicon Oxide
- The fabrication process of trenches is compatible with

the standard LGAD process flow.

TI-LGAD slide credits: FBK, Trento, Italy

12/09/2019

Low-Gain Region Characterization for TI-LGAD

- Low-gain region reduced from ~30 μm to 5-10 μm (50% criterion)
- Timing resolution, irradiation properties still to be assessed

12/09/2019

Approach 3: iLGAD

Inverted Architecture (iLGAD)

LGAD (N on P Microstrips)

iLGAD (P on P Microstrips)

Junction/Gain layer at back of device

Low fields at upper surface, so conventional segmentation
 Inverted architecture ("iLGAD")

Prototype iLGAD Characterization

PiN and iLGAD Timing Comparison

- Large signal ("saturated") regime
- Fast rise region shows PiN-like turn-on (effective charge collection)
- MIP timing resolution under study

Approach 4: DJ LGAD

DJ-LGAD: A Methoda Approach to LGAD Granularity

Basic inspiration is that of the capacitive field: Locally large, but surrounded by low-field region beyond the plates.

Idea:

- Use symmetric P-N junction to act as an effective capacitor
- Localized high field in junction region creates impact ionization
- Bury the P-N junction so that fields are low at the surface, allowing conventional granularization

"Deep Junction" LGAD (DJ-LGAD)

DJ-LGAD Baseline Design

Electrode N ^{t+} P-stop N ⁺⁺ P-stop N ⁺⁺ GAIN L ↑ ↑	AYER C. G	Patent Application SC 2019-978 C. Gee, S. Mazza, B. Schumm, Y. Zhao		
20-50 μm P	Element	Doping Level	Extent in Depth	
Ohmic contact	N isolation layer N ⁺⁺ gain plate (upper half of gain layer) P ⁺⁺ gain plate (lower half of gain	Constant doping of density 3e12 N/cm^3 Gaussian doping, peak of 3.0e16 N/cm^3 Gaussian doping, peak of 3.0e16	From 0 μm (surface) to beginning of N ⁺⁺ "gain plate" layer Peak at 4 μm, Gaussian width of 0.17 μm Peak at 5.5 μm, Gaussian width of	
Ground plane	layer) P drift region P stop	N/cm^3 Constant doping of density 3.0e12 N/cm^3 Constant doping of density 1.0e13	0.17 μm End of P ⁺⁺ "gain plate" layer to 50 μm 1 μm deep, 1μ wide	
requires significant tuning of	N ⁺⁺ implant Gain layer doping tolerance (N ⁺⁺ and P ⁺⁺ varied together)	N/cm^3 Constant doping of density 1.0e19 N/cm^3 Effective operation between 2.9e^16 and 3.5e^16	At surface	
design parameters		DJ-LGAD Baseline D)esign	

DJ LGAD Simulated Performance

Field Configuration

10

- Junction creates gain region
- Low field at surface and in bulk
- Drift velocity saturated everywhere

otal gain from all pads 20 um pitch Х **Gain Uniformity Collected signal versus** 20 μm pixels simulated **MIP** incident position • ± 4% across full device DC coupled to readout pads 50 60 70 80 90 Mip position [um]

DJ-LGAD Performance and Prototyping

First prototype (if funded) will be rudimentary planar prototype to confirm the Deep Junction principle

SBIR-STTR Grant Submitted Cactus Materials, Inc. Title: A New Approach to Achieving High Granularity in Low-Gain Avalanche Detectors PI: Rafiqul Islam, PhD. Rafiqul.islam@cactusmaterials.com Topic Number/Subtopic Letter: 34b

12/09/2019

LGADs and High Frame-Rate Applications

LGADs and Ultra-High Frame Rate

Next-generation photon sources will likely strive towards multi-GHz frame rate

C. Barnes, *The Dynamic Mesoscale Materials Capability*, P/T Colloquium, Los Alamos National Laboratory, Feb 14, 2019, https://204.121.60.11/science-innovation/sciencefacilities/dmmsc/_assets/docs/PTColloq%2020190214_public.pdf

Q: Do LGADs provide any advantage at high frame rate? Note that impact ionization is a secondary process, so takes time to develop

Consider signal development in the "saturated" regime (essentially uniform e/h plasma deposited instantaneously in the detector bulk)

B. Schumm, Signal Development for Saturated Ultrafast Sensors with Impact Ionization Gain, arXiv:1908.04953, August 2019; submitted to JINST

12/09/2019

Signal Development in Saturated Regime

Consider flux Φ of X-rays of energy E_{γ} (eV) incident on a sensor of thickness d with attenuation length λ and e/h drift speed $v_{e/h}^{s}$. At leading order the signal charge collected after time t contains two terms: A linear direct term and a quadratic term from impact ionization (gain):

$$Q_{e/h}(t) = \frac{\Phi E_{\gamma} v_{e/h}^{s}}{3.66 \lambda} \left[t + \frac{1}{2} \sum_{e/h} A_{e/h} v_{e/h}^{s} t^{2} \right] \qquad A_{e/h} = \frac{1}{2} \sum_{e/h} A_{e/h} v_{e/h}^{s} t^{2} dt^{2} dt^{$$

$$a_{e/h} = \frac{1}{d} \int dz \, \alpha_{e/h}(z)$$

Impact ionization factor = number pf e/h pairs created per cm of travel of extant carrier

If amplified with a circuit with collection time τ , the total collected charge will be approximately

$$Q_{e/h} = \frac{K \Phi E_{\gamma} v_{e/h}^s \tau}{3.66 \lambda} \left[1 + \frac{1}{2} \sum_{e/h} K A_{e/h} v_{e/h}^s \tau \right]$$
Gain contribution

where $K \cong 1$ relates the circuit shaping time to the effective charge collection time. If the circled term is greater than 1 then the gain provides a benefit. arXiv:1908.04953

Saturated Sensors: Elemental Simulation

→ LGADs provide benefit to ~10 GHz frame rate (maximum under consideration in next generation photon sources)

12/09/2019

Summary

Granularity

Conventional LGAD limited to ~1mm² granularity by junction termination requirements
 A number of approaches under development to reach 50 µm (or better) scale
 AC-LGAD most advanced idea but still much R&D to do
 DJ-LGAD new (first public presentation) has potential to provide high granularity in DC-coupled mode with no gain-free regions

Frame Rate

Study of fundamental properties of impact ionization and solid-state charge collection suggests that LGADs advantageous to frame rates of 10 GHz or more

- Accelerator diagnostics (R&D funded by 3 year University of California "Lab Fees" grant to begin in Spring, with LANL, LBNL, UC Davis, UC Santa Barbara, UC Santa Cruz)
- X-ray imaging
- ... ?

Our Benefactors

PHOTON IS OUR BUSINESS

BACKUP

12/09/2019

Basic Properties: Electron Drift Velocity

Jacoboni, C., C. Canali, G. Ottaviani, and A. A. Quaranta, *Solid State Electron.* **20**, **2**(1977) 77-89.

- For fields approaching 10⁴
 V/cm, velocity saturates at ~10⁷
 cm/s
- Transit time for 100 μm of silicon is ~1 nsec
- Transit time and temporal resolution are NOT one and the same, but it sets a scale
- Thinner sensors generally associated with more precise timing

12/12/2018

Basic Properties: Hole Drift Velocity

- Saturated speed a bit less than for electrons
- Saturation occurs at higher fields
- Note that 10⁴ V/cm over 100 μm is 100 V

Jacoboni, C., C. Canali, G. Ottaviani, and A. A. Quaranta, *Solid State Electron.* **20**, **2**(1977) 77-89.

12/12/2018

Electron drift velocity

Jacoboni, C., C. Canali, G. Ottaviani, and A. A. Quaranta, *Solid State Electron.* **20**, **2**(1977) 77-89.

12/12/2018