From LGADs to AC-coupled LGADs for fast timing applications

G. Giacomini, W. Chen, G. D'Amen, A. Tricoli

Brookhaven National laboratory, Upton, NY, USA

CPAD INSTRUMENTATION FRONTIER WORKSHOP 2019 University of Wisconsin-Madison

Outline

- Low Gain Avalanche Diode (LGADs) R&D
 - High Energy Physics : TIMING
 - Photon Science : GAIN
 - Fabrication
 - Measurements

Limits of LGADs

- AC-coupled LGADs
 - Fabrication
 - Measurements

All silicon process done in BNL Instrumentation Division Class-100 Clean Room

- + dry etching and thin films deposition, but we need to outsource:
- Ion implantation
- Polysilicon deposition

LGAD Structure

Depletion of the p+ gain layer creates intense Electric Field, high enough for electron impact ionization to occur.

Hole impact ionization ~ 0

→ no BreakDown

 \rightarrow gain ~ few 10s

If the substrate is thin (~ 50 μ m) \rightarrow signal is fast (~30 ps)

LGAD fabrication at BNL

- 4" *p*-type epitaxial wafers (100), N_A~<1e14cm⁻
 ³, 50µm thick (→ V_{depl} ~120V). Also FZ used.
- 4 ion implantations

(**JTE** [Junction Termination Edge] and **gain** at high energy)

- 6 photolithographic masks
- *p*-spray isolation (patterned externally to the active area to avoid implant on gain region).
- layout with pads of 1x1 mm², 2x2 mm², 3x3 mm² and arrays.

G. Giacomini, et al. "Development of a technology for the fabrication of Low-Gain Avalanche Detectors at BNL", Nuclear Inst. and Methods in Physics Research, A 934 (2019) 52–57.

Static Electrical Characterization

BNL's LGADs :

- Leakage current as measured on diodes (gain=1) 1x1 mm² is ~ 10pA (1nA/cm²)
- Consistent from batch to batch
- Clearly current depends on gain layer dose, so does the breakdown voltage
- GR can stand higher voltages

Gain Measurements

Also Charge sensitive pre-amplifier used

Limits of LGADs

Lateral dimensions of Gain layer must be much larger than thickness of substrate, for a uniform multiplication.

Dead volume (gain~1) extends within the implanted region of the gain layer:

 \rightarrow pixels/strips (pitch ~ 100 µm) with gain layer below the implant have a FF<<100% (Voltage dependent)

 \rightarrow large pads are preferred (~ 1 mm); e.g. HGTD of ATLAS and MTD of CMS

 \rightarrow 4D detector not possible!!!

A possible Solution: Closelyspaced electrodes can be put on the opposite of the wafer (i-LGADS, CNM Barcelona), but wafers must be thick to be processed.

--> not possible to associate fasttime information on a per-pixel level!

AC-LGAD concept

Two main differences:

- one large low-doped high-ρ n⁺ implant running overall the active area, instead of a high-doped low-ρ n⁺⁺
- 2. A thin insulator over the n^+ , where fine-pitch electrodes are placed.

100% Fill Factor and **fast timing information at a per-pixel level** both achieved!!!

- Signal is still generated by drift of multiplied holes into the substrate and AC-coupled through dielectric
- Electrons collect at the resistive n^+ and then slowly flow to a ohmic contact at the edge.

Mixed mode TCAD simulation

To maximize the signal fed to the electronics, maximize RC. but smaller RC increase crosstalk in neighbor pixels

Mixed mode TCAD simulation -2

Fabrication of AC-LGAD

Starting point: LGAD

Design:

- Change METAL (and thus Contacts)
- *n*⁺⁺ runs at the periphery only (replaced by *n*⁺ in the active area)

Process:

- Resistive n⁺ in the active area 10/100 less dose
- Thin insulator over the *n*⁺ (100nm SiN)
- Gain dose recalibrated

Recalibration of Gain Layer

In the very first AC-LGADs wafers, used the same gain layer dose as in LGADs.

Problem: the *n*⁺ is little doped, and its depleted thickness is not negligible the *p*⁺ gain layer is deeper, GAIN is HIGHER LOWER BREAKDOWN VOLTAGE

Gain layer dose has been lowered in following production, while keeping the process flow very similar.

Signal amplitude in LGADs vs AC-LGADs

- LGAD: same AC-LGAD device where the *n*⁺⁺ is read-out by the TA.
- AC-LGAD: one of the 3x3 200µm x 200µm ACcoupled pads
- → Bias conditions and gain are the same
 Comparison of pulse amplitudes of betas from ⁹⁰Sr.
 Essentially equal distribution (same gain)
 for LGAD and AC-LGAD Amplitudes

 \rightarrow all signal goes through C_{AC} (=20pF)

Cross-talk

Response of a single pixel as a function of shining position of IR or red laser (TCT scan).

• **Border effect**: the *n*⁺⁺ is a low resistance path that couples the signals back to the pixel under measure.

Conclusions

- Low-Gain Avalanche Diodes (LGADs) have been fabricated at BNL
- LGADs are the starting point for AC-LGAD development
- By changing a few photolithographic masks and tuning process flow parameters, AC-LGADs have been fabricated as well.
- Positive and similar results from the two devices,
 - experimental results have shown margins of improvement, e.g. cross-talk along periphery of device.
 - Optimization is ongoing.

BACK-UP

Timing

AC-LAGDs and LGADs have very similar waveforms. Same timing performance expected.

Calculating the **Jitter** on ⁹⁰Sr waveforms, $\sigma_t = \sigma_n / (dS/dt) \sim 20 \text{ ps}$.

NEXT: Measuring timing with beta scope.

Telescope for timing measurements: Beta scope SCIPP TA on 3D-printed support

3D-printed telescope

Cross-talk strontium

Amplitude ₅ / Amplitude ₁	10%
Amplitude ₉ / Amplitude ₁	6%

RED laser

Charge collection [A.U.]

-100

-200

-300

-400

-500

0

-50

-100

-150

-200

-250

-300

-350

-400

Strip 1 and strip 3 as in slide13

