DOE BRN Study Solid State Tracking

Carl Haber for the Study Group*

*Marina Artuso, Petra Merkel, Alessandro Tricoli (co-convenors)

David Stuart, Vitaliy Fadeyev, Timon Heim, Sally Seidel, Cinzia da Via, Richard Brenner, Shih-Chieh Hsu, Jessica Metcalfe, Karol Krizka (topic experts)

Charge

- Requested by DOE to develop a report on "transformative" technologies aimed at a future physics facility on the 15-25 year time scale
- Our group interprets this to be a future hadron or lepton collider, beyond the HL-LHC, at the energy frontier
- Agency would like to see a limited number of high priority directions
- We have drafted a document based upon limited community input and therefore seek a wider engagement
- Please consider the following as a first pass and offer us constructive suggestions
- Leadership recruited two conveners, we recruited additional conveners and then a group of topic experts

Conveners

- Marina Artuso, Syracuse, LHCb, CLEO, RD42, RD50, BTeV
- Carl Haber, LBNL, ATLAS, CDF
- Petra Merkel, FNAL, CMS, CDF
- Alessandro Tricoli, BNL, ATLAS, OPAL, RD50
- <u>chhaber@lbl.gov</u>
- <u>martuso@syr.edu</u>
- petra@fnal.gov
- <u>atricoli@bnl.gov</u>

Topics and Experts

- Fast Timing: Dave Stuart (UCSB) , A. Tricoli (BNL)
- Pixel Front Ends: T.Heim (RD53)
- Sensors: Vitaliy Fadeyev (UCSC)
- MAPS: Vitaliy Fadeyev, Jessica Metcalfe (ANL)
- 3D: Cinzia da Via (Manchester, SBU)
- Data Transmission: Richard Brenner (Uppsala)
- Radiation Damage: Sally Seidel (UNM), Karol Krizka (LBNL)
- Low Mass Mechanics: Shih-Chieh Hsu (UW)
- Facilities and Infrastructure

Transformative Technologies

- Informed by past experience
- In 50 years solid state detectors have advanced from ~1 channel benchtop spectroscopic systems to 10⁸ channel, 200 m², >10 year deployments
- Transformative
 - Silicon strip detector
 - FE ASIC
 - Hybrid pixel detector
 - Precision Carbon Fiber/CO2 cooling
- Incremental: radiation hard electronics, sensors

Hadron Collider View

generation	year	luminosity	ΔT	chan/area	dose	readout
1	1990	10 ²⁹	3.5 μs	50K/ 0.68 m ²	25 Krad	3 μm CMOS
CDF SVX						
2	1995	10 ³⁰	3.5 µs	50K	100 Krad	1.2 μ m RHCMOS
CDF SVX*						
3	2000	10 ³²	128 ns	600K / 5 m²	1 Mrad,	0.8 μm
Run 2					10 ¹³ /cm ²	RHCMOS
4	2009	10 ³⁴	25 ns	5 x10 ⁶ / 68 m ²	10 Mrad	0.25 μm CMOS
LHC				10 ⁸ pixels	10 ¹⁵	RH Bi-CMOS
5	2025	5 x 10 ³⁴	25 ns	10 ⁸ / 200 m ²	100 Mrad	65 – 130 nm CMOS
HL-LHC				10 ⁹ pixels	10 ¹⁶	SiGe, Commercial
6	>2035	3 x 10 ³⁵	25 ns	5 x 10 ⁸ / 400 m ²	1-10 Grad	Unknown features
HE-LHC/FCC			(10 ps)	5 x 10 ⁹ pixels	1018	Monolithic CMOS?

Future Facilities Requirements

- Most developments require a systems approach sensors, electronics, DAQ, mechanics, cooling
- HE LHC or FCC-hh
 - Granularity, speed, radiation resistance, background rejection
 - L= 3 x 10³⁵ cm⁻²s⁻¹
 - 10¹⁸ n_{eq} cm⁻²
- ILC or FCC-ee
 - Low mass
 - Small pixels
 - Mechanical precision
- Scale: use of commercial fabrication attractive
- Capabilities to test components in real conditions
- Engineering and technical infrastructure and support

Priority Research Directions

- This is not an ordered list
- PRD1: High resolution pixel detectors with per pixel fast timing
- PRD2: New materials and processes for sensors and associated components
- PRD3: A high intensity irradiation facility for the US community
- PRD4: Large scale "irreducible mass" tracking systems

PRD1:High Resolution Pixel Detectors with Per Pixel Fast Timing

- Background and pile-up rejection for multiple interactions at a hadron collider
- Emerging fast timing efforts at HL-LHC with ~1 mm² pads using Low Gain Avalanche Detectors
- Can this be scaled to ~50 um² pixels? A big step
 - Interpixel dead regions, efficiency
 - Acceptable power levels
 - Radiation resistance
 - System implementations: timing, services, cooling

PRD2: New Materials and Processes from Sensors and Components

- Silicon has been the work horse and has shown radiation resistance up to current requirements
 - Special processing, biasing, low temperature
- Are there game changing materials?
 - Example: radiation hard at room temperature?
 - Thin and low mass
 - Increased density for smaller pixels
- Significant R&D over 25 years
 - Diamond, 3D, Ge, Large band gap materials
 - But no large industrial base...yet
- Emerging commercial markets
 - Power electronics -> high temperature, radiation hard
 - Thin films /flexible components, nano, organics -> low mass

PRD3: A High Intensity Irradiation Facility for the US Community

- Radiation effects: dose, rate, SEE
- We lack a central, reliable facility for these measurements
- How can we reach the integrated doses of a future hadron collider?
- Propose a dedicated US based proton facility with appropriate support and infrastructure, long term and consistent operation
- Could a study group be convened to make recommendations to the FA's?

PRD4: Large Scale "Irreducible Mass" Tracking Systems

- For future electron colliders minimal mass, small pixels are required. Also of benefit in hadron machine.
- An "irreducible" system means it approaches just the mass of the active sensor material
- Aspects of this have been under study for >10 years
 - Thin sensors, gas cooling, pulsed power...
- New aspects include maturing MAPS devices from commercial processes – potential cost and fabrication time advantages
- Systems deployed for heavy ion collisions
 - ALICE ITS: 10 m² of thinned MAPS, 24K chips
- This may actually now be driven by a series of incremental developments
- But heavy reliance on commercial processes so community must remain engaged as processes evolve

Other Considerations

- New or transformative technologies are usually introduced with a staged approach
- Need opportunities to scale up through several generations of experiments
- Infrastructure and engineering
 - Examples: Silicon facilities, EE and ME teams, composite fabrication facilities, test beams
 - Much of this exists today and has been built up over the past 25 years
 - Must be sustained and modernized
 - Like an accelerator...these are "national" facilities serving our broad *collaborations*

Contacts

- <u>chhaber@lbl.gov</u>
- martuso@syr.edu
- petra@fnal.gov
- <u>atricoli@bnl.gov</u>