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NI The ATLAS Detector

* Silicon pixel detectors are at the core of the current and planned
upgrades of the ATLAS Pixel detector
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N1 ATLAS Pixel Detector

e The ATLAS Pixel detector consists
of four barrel layers and 2 X 3 disks

* The innermost barrel layer (the
Insertable B-Layer or IBL) is <
located 3.3 cm from the LHC beam
line L

* By the end of LHC Run 2, the ,
integrated fluences for the two == . TRT
layers closest to the beam line were:

« IBL: 1 X 10'> I MeV n,/cm?
* B-Layer: 5 x 104 1 MeV n,,/cm? Pixels{ o= 6.5

B

R =50.5mm
R =33.25mm

R = 0mm
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W1 Impact on Physics and Performance

* It is imperative that radiation damage effects be quantified to inform
operations, offline analysis, and future detector design

* Significant decrease of dE/dx and cluster size for IBL with delivered
luminosity

* Possible degradation in position resolution
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NI Fluence Predict
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* Simulated 1 MeV n, fluence predictions made through the

ATLAS FLUKA geometry on the left

 Lifetime fluence predictions for the ATLAS Pixel Detector layers
are shown on the right (since the start of Run 2 on June 3, 2015)

* These simulations are used to check how much radiation damage
the sensors have been exposed to and can be compared to data
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N1 Silicon Sensors

« The ATLAS Pixel Detector layers consist of n*-in-n planar
oxygenated silicon sensors
pitch:
50 X [250 - 400] um?

n+ electrodes

® B-field ® Thickness:
200 - 250 um
depletion £ ) n-type bulk
region ‘

diffusion

p* backside

MIP: Minimum Ionizing Particle, 8; : Lorentz Angle
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N1 Radiation Damage

* Radiation introduces traps in the bulk by displacing a silicon atom from
its lattice site, resulting in an interstitial and a vacancy (Frenkel pair)

(X) B-field

deplgtion ; rdopigh
region *
p* backside diffusion

MIP: Minimum Ionizing Particle, 8; : Lorentz Angle
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Part 1

* Monitoring of radiation damage effects

»Use the Hamburg Model* to validate sensor
conditions data: fluence and depletion voltage

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*M. Moll, ‘Radiation damage in silicon particle detectors: Microscopic defects and macroscopic
properties’, PhD thesis: Hamburg U., 1999, http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis99-040
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W1

Hamburg Model

-
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—~

difference in leakage
current before and
after irradiation

[eakage Current

Al =D -V

k “—— fluence

* The Hamburg Model simulates leakage current and depletion voltage

N[

radiation damage
coefficient

Depletion Voltage
ed?
Vdepl - |Neﬂ| ' Té()f

effective doping
concentration

~

/

\<\/

time and temperature dependent
and include annealing characterization

Other variables: V' is the depleted volume, d is the sensor thickness, e 1s the charge of
the electron, € is the dielectric constant, and €, is the vacuum permittivity
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N1 Fluence Monitoring

* The measured (“Data”) and predicted (““Sim”) leakage current as a function
of integrated luminosity for IBL

* Leakage current is predicted using the Hamburg Model and by fitting the data
in the dashed region to determine the fluence-to-luminosity factor, ®/L;,¢

* Leakage currents for the other layers : ATL-INDET-PUB-2019-001
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N1 Fluence-to-luminosity

* Fluence-to-luminosity conversion factors (extracted from the leakage
current fits) as a function of z on IBL

 The conversion factors are
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"ATLAS Collaboration, A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-
Landshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/record/1474107
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NV Depletion Voltage

 Calculated depletion voltage according to the Hamburg Model for
IBL (on the left) and the B-Layer (on the right)

* Depletion voltage data 1s determined through two techniques:
cross talk scans and bias voltage scans

* Full depletion 1s well predicted by the Hamburg Model at lower
fluences and over predicted at higher fluences
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YL Digitizer Model

* A schematic of the digitizer model is shown here — start with
fluence and annealing input and produce induced charge at the

electrode as output

—

fluence

\
. Electric field .
annealing trapping
/ l \ constant
Lorentz| [location| |drift
compute angle @ trap | |time
per cond.
compute l / time
charge / traveled
Per 9eo. location
compute R \’ induced
per e/h amo —» | charge
| Potential | —
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Part 11

* Modelling of radiation damage effects

»Use Technology Computer Aided Design
(TCAD) to implement a non-uniform electric
field and compute charge propagation inside
the sensor bulk

» Implements the Chiochia double trap model*
(one acceptor trap and one donor trap)

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*V. Chiochia et al., 4 double junction model of irradiated silicon pixel sensors for LHC, NIMA 568 (2006) 51
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N1 Electric Field

* The simulated electric field magnitude in the z direction along the
bulk depth of an ATLAS IBL sensor

* Simulation uses the Chiochia Radiation Model through TCAD
* The electric field 1s averaged over x and y

 The E field at various fluences 1s shown for the sensor biased at:
80 V (on the left) and 150 V (on the right)
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1 Time-to-Electrode

ATLAS Simulation
200 pm n”-in-n Planar Sensor
80 V, Chiochia Rad. Model

20 -

* The projected time - in the absence
of trapping — for an electron or hole
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£, :'4'd
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e, kN
. . . 15 EN
to drift from the point of generation NN
to the collecting electrode (for NN N T e oot agen?

electrons) or back plane (for holes) 10

» Using E fields predicted by Chiochia

Projected Time to Reach Electrode [ns]
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* An exponential distribution, with mean value 1/ ®, 1s used to set

the random charge trapping time
* [ 1s the trapping constant and & is fluence
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NI Ramo Potential

shown aty =0

—1

: ATLAS Simulation

180 » 200 um n'-in-n Planar Sensor ]

o
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* The Ramo potential 1s calculated Eg
using TCAD to solve the Poisson g
equation (V2¢w = 0) and from the
geometry of the sensor

* Here ¢y 1s the Ramo potential
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* Slice of the full three-dimensional 0s

ATLAS IBL planar sensor Ramo
potential 1s shown

 The dashed vertical line (at 25 um) 0
indicates the edge of the primary 20
pixel oL
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* Induced charge on the electrode is computed with the Ramo
potential and the charge trapping location:

Qinduced — _Q[gbw()_éend) - wa(fstart)]
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Part 111

 Model validations

» Comparing simulations with data for: charge
collection efficiency and Lorentz angle

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012
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NI Charge Collection Efficiency

» Charge collection efficiency as a function of integrated luminosity

for 80 V, 150 V, and 350 V bias voltage

* The bias voltage was increased during data-taking, so the data
points are only available at increasing high-voltage values
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* The uncertainty on the
simulation 1s due to
model parameters as well
as the uncertainty in the
fluence-to-luminosity
conversion

* Uncertainties on the data
are due to charge
calibration drift (vertical)
and luminosity
uncertainty (horizontal)



1 Lorentz Angle

* The change in the Lorentz angle (6;,) from the unirradiated case as a
function of integrated luminosity

* Two TCAD radiation " ,
. Fluence [10" n,/cm”]
models are considered: 10" 1
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* Due to the deformation of S0F J = E
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the E field, the mobility o 00 - :

and Lorentz angle increase of . ,, E
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*M. Petasecca et. al., Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors,
IEEE Transactions on Nuclear Science 53 (2006) 2971
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= Conclusions

* Measurements and simulations of radiation damage to the ATLAS
pixels have been presented

* The updated digitization model 1s now in ATLAS software and is
aiming to be default in LHC Run 3
* The digitization model is being used for ATLAS upgrade (ITk)
design studies

* Modeling radiation damage in the ATLAS software 1s critical to
maintain physics performance in Run 3 and for the HL-LHC

* The aim 1is to improve the model accuracies for input to operations,
offline analysis, and future detector design
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Hamburg Model: Leakage Current

* The Hamburg model is based on this relationship:

Al =Dy -V

* And by replacing a (the radiation damage coefficient) the equation

becomes:
n £ n O(T:) - t;
aqexp(—ZT(;,j))+a8—,Blog(Z %)

j:i J=l

n
Leak = ((Deq/Lint) XV- Z Lint,i :
i=1

 Where the variables are:

* @, 1s the fluence, Ly is the integrated luminosity, V is depleted volume of
the sensor, #;1s the time, and 7, = 1min

 a;=(1.23+0.06)x1017 A/cm

. 7—1 _ (1-2f?j(3)) x 1013 g1 x o(~1.1120.05) eV/kgT
* ay =7.07-107" A/em

* B =(329+0.18) x 107® A/em

Eeg (1 1
s om-eol (1)
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2ug Hamburg Model: Depletion Voltage

Neﬂ‘(l) — NBon-removable(O) + Nlr)emovable(t) N N/:table([) i Ngeneﬁcial(t) i N/I:averse(t)’ (3)
%Nf)emovable(t) = —c¢(r)N§movable(t) removal of donors for n-type during irradiation, (4)
%N/“;able(r) = gcd(1) addition of stable acceptors during irradiation,  (5)
%Ngeneﬁdal(t) = gad(t) — kA(T)NRe“eﬁCial(t) beneficial annealing, 6)
%N&eve“e(t) = gy (t) — ky(T)NS ™ ()  reverse annealing — neutrals, (7)
%N () = ky(T)Ny "™ (t) reverse annealing — acceptors, (8)
Parameter | IBL [x107>cm™'] | B-layer [x10™>cm™'] | ROSE Coll. [x10~?cm™']

ZA 1.4+0.5 1.4+0.5 1.4 (n)
gy 6.0+1.6 6.0+1.6 2.3 (p), 4.8 (n)
gc 1.1+0.3 0.45+0.1 0.53 (p), 2.0 (n)

2 ] : : :
Vieol = [Nogi| - ed where d is the sensor thickness, e is the charge of the electron, € is
P " 2ee’  the dielectric constant, and €, is the vacuum permittivity
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"% Full Run 2 IBL Leakage Current

* The IBL Leakage current for the full Run 2 data 1s
shown here:
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[ Planar: z & [16,24) cm [l Planar: z & [-24,-16] cm
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