

Modelling radiation damage to pixel sensors in the ATLAS detector

Aidan Grummer, University of New Mexico On behalf of the ATLAS Collaboration

Dec. 10, 2019 CPAD Instrumentation Frontier Workshop 2019

The ATLAS Detector

• Silicon pixel detectors are at the core of the current and planned upgrades of the ATLAS Pixel detector

ATLAS Pixel Detector

- The ATLAS Pixel detector consists of four barrel layers and 2 × 3 disks
- The innermost barrel layer (the Insertable B-Layer or IBL) is located 3.3 cm from the LHC beam line
- By the end of LHC Run 2, the integrated fluences for the two layers closest to the beam line were:
 - IBL: 1×10^{15} 1 MeV n_{eq}/cm^2
 - B-Layer: 5×10^{14} 1 MeV n_{eq}/cm^2

Impact on Physics and Performance

- It is imperative that radiation damage effects be quantified to inform operations, offline analysis, and future detector design
- Significant decrease of dE/dx and cluster size for IBL with delivered luminosity
- Possible degradation in position resolution

A. Grummer

Fluence Predictions

- Simulated 1 MeV n_{eq} fluence predictions made through the ATLAS FLUKA geometry on the left
- Lifetime fluence predictions for the ATLAS Pixel Detector layers are shown on the right (since the start of Run 2 on June 3, 2015)
- These simulations are used to check how much radiation damage the sensors have been exposed to and can be compared to data

Silicon Sensors

 The ATLAS Pixel Detector layers consist of n⁺-in-n planar oxygenated silicon sensors

MIP: Minimum Ionizing Particle, θ_L : Lorentz Angle

Radiation Damage

• Radiation introduces traps in the bulk by displacing a silicon atom from its lattice site, resulting in an interstitial and a vacancy (Frenkel pair)

MIP: Minimum Ionizing Particle, θ_L : Lorentz Angle

Part I

<u>Monitoring</u> of radiation damage effects
 >Use the Hamburg Model* to validate sensor conditions data: fluence and depletion voltage

For more detail see: The ATLAS Collaboration, JINST 14 (2019) P06012

*M. Moll, 'Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties', PhD thesis: Hamburg U., 1999, <u>http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis99-040</u>

A. Grummer

Hamburg Model

• The Hamburg Model simulates leakage current and depletion voltage

the electron, ϵ is the dielectric constant, and ϵ_0 is the vacuum permittivity

NN N

Fluence Monitoring

- The measured ("Data") and predicted ("Sim") leakage current as a function of integrated luminosity for IBL
- Leakage current is predicted using the Hamburg Model and by fitting the data in the dashed region to determine the fluence-to-luminosity factor, Φ/L_{int}
- Leakage currents for the other layers : <u>ATL-INDET-PUB-2019-001</u>

Integrated Luminosity [fb⁻¹]

Fluence-to-luminosity

- Fluence-to-luminosity conversion factors (extracted from the leakage current fits) as a function of z on IBL
- The conversion factors are compared to those predicted with
 - Pythia + FLUKA
 - Pythia + Geant4
- Two different minimum bias tunings are are also investigated*
- Differences between measured and predicted Φ/L_{int} are most likely due to damage factors or input particle spectra

*ATLAS Collaboration, A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-Landshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/record/1474107

Depletion Voltage

- Calculated depletion voltage according to the Hamburg Model for IBL (on the left) and the B-Layer (on the right)
- Depletion voltage data is determined through two techniques: cross talk scans and bias voltage scans
- Full depletion is well predicted by the Hamburg Model at lower fluences and over predicted at higher fluences

Digitizer Model

• A schematic of the digitizer model is shown here – start with fluence and annealing input and produce induced charge at the electrode as output

Part II

- <u>Modelling</u> of radiation damage effects
 - ➤Use Technology Computer Aided Design (TCAD) to implement a non-uniform electric field and compute charge propagation inside the sensor bulk
 - Implements the Chiochia double trap model* (one acceptor trap and one donor trap)

For more detail see: The ATLAS Collaboration, JINST 14 (2019) P06012

^{*}V. Chiochia et al., A double junction model of irradiated silicon pixel sensors for LHC, NIMA 568 (2006) 51

Electric Field

- The simulated electric field magnitude in the z direction along the bulk depth of an ATLAS IBL sensor
 - Simulation uses the Chiochia Radiation Model through TCAD
 - The electric field is averaged over x and y
- The E field at various fluences is shown for the sensor biased at: 80 V (on the left) and 150 V (on the right)

Time-to-Electrode

- The projected time in the absence of trapping – for an electron or hole to drift from the point of generation to the collecting electrode (for electrons) or back plane (for holes)
- Using E fields predicted by Chiochia model through TCAD simulation

- An exponential distribution, with mean value $1/\beta \Phi$, is used to set the random charge trapping time
 - β is the trapping constant and Φ is fluence

Ramo Potential

shown at y = 0

- The Ramo potential is calculated using TCAD to solve the Poisson equation ($\nabla^2 \phi_W = 0$) and from the geometry of the sensor
 - Here ϕ_W is the Ramo potential
- Slice of the full three-dimensional ATLAS IBL planar sensor Ramo potential is shown
 - The dashed vertical line (at 25 μ m) indicates the edge of the primary pixel

• Induced charge on the electrode is computed with the Ramo potential and the charge trapping location:

$$Q_{\text{induced}} = -q[\phi_{\text{w}}(\vec{x}_{\text{end}}) - \phi_{\text{w}}(\vec{x}_{\text{start}})]$$

Part III

- Model validations
 - Comparing simulations with data for: charge collection efficiency and Lorentz angle

For more detail see: The ATLAS Collaboration, JINST 14 (2019) P06012

Charge Collection Efficiency

- Charge collection efficiency as a function of integrated luminosity for 80 V, 150 V, and 350 V bias voltage
- The bias voltage was increased during data-taking, so the data points are only available at increasing high-voltage values

- The uncertainty on the simulation is due to model parameters as well as the uncertainty in the fluence-to-luminosity conversion
- Uncertainties on the data are due to charge calibration drift (vertical) and luminosity uncertainty (horizontal)

Lorentz Angle

- The change in the Lorentz angle (θ_L) from the unirradiated case as a function of integrated luminosity
- Two TCAD radiation models are considered: Chiochia and Petasecca*
 - The Petasecca model predicts a linear electric field profile
- Due to the deformation of the E field, the mobility and Lorentz angle increase with fluence

*M. Petasecca et. al., Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors, IEEE Transactions on Nuclear Science 53 (2006) 2971

Conclusions

- Measurements and simulations of radiation damage to the ATLAS pixels have been presented
- The updated digitization model is now in ATLAS software and is aiming to be default in LHC Run 3
 - The digitization model is being used for ATLAS upgrade (ITk) design studies
- Modeling radiation damage in the ATLAS software is critical to maintain physics performance in Run 3 and for the HL-LHC
 - The aim is to improve the model accuracies for input to operations, offline analysis, and future detector design

Additional Slides

Hamburg Model: Leakage Current

• The Hamburg model is based on this relationship:

$$\Delta I = \alpha \cdot \Phi_{\rm eq} \cdot V$$

• And by replacing α (the radiation damage coefficient) the equation becomes:

$$I_{\text{leak}} = (\Phi_{\text{eq}}/L_{\text{int}}) \times V \cdot \sum_{i=1}^{n} L_{\text{int},i} \cdot \left[\alpha_{\text{I}} \exp\left(-\sum_{j=i}^{n} \frac{t_j}{\tau(T_j)}\right) + \alpha_0^* - \beta \log\left(\sum_{j=i}^{n} \frac{\Theta(T_j) \cdot t_j}{t_0}\right) \right]$$

- Where the variables are:
 - Φ_{eq} is the fluence, L_{int} is the integrated luminosity, V is depleted volume of the sensor, t_i is the time, and $t_0 = 1$ min
 - $\alpha_I = (1.23 \pm 0.06) \times 10^{-17} \text{ A/cm}$
 - $\tau^{-1} = (1.2^{+5.3}_{-1.0}) \times 10^{13} \text{ s}^{-1} \times e^{(-1.11 \pm 0.05) \text{ eV}/k_{\text{B}}T}$
 - $\alpha_0^* = 7.07 \cdot 10^{-17}$ A/cm.
 - $\beta = (3.29 \pm 0.18) \times 10^{-18} \text{ A/cm}$

• and
$$\Theta(T) = \exp\left[-\frac{E_{\text{eff}}}{k_{\text{B}}}\left(\frac{1}{T} - \frac{1}{T_{\text{R}}}\right)\right]$$

Hamburg Model: Depletion Voltage

$$N_{\rm eff}(t) = N_{\rm D}^{\rm non-removable}(0) + N_{\rm D}^{\rm removable}(t) - N_{\rm A}^{\rm stable}(t) - N_{\rm A}^{\rm beneficial}(t) - N_{\rm A}^{\rm reverse}(t),$$
(3)

$$\frac{d}{dt}N_{D}^{\text{removable}}(t) = -c\phi(t)N_{D}^{\text{removable}}(t) \quad \text{removal of donors for } n\text{-type during irradiation,} \quad (4)$$

$$\frac{d}{dt}N_{A}^{\text{stable}}(t) = g_{C}\phi(t) \quad \text{addition of stable acceptors during irradiation,} \quad (5)$$

$$\frac{d}{dt}N_{A}^{\text{beneficial}}(t) = g_{A}\phi(t) - k_{A}(T)N_{A}^{\text{beneficial}}(t) \quad \text{beneficial annealing,} \quad (6)$$

$$\frac{d}{dt}N_{N}^{\text{reverse}}(t) = g_{Y}\phi(t) - k_{Y}(T)N_{N}^{\text{reverse}}(t) \quad \text{reverse annealing - neutrals,} \quad (7)$$

$$\frac{d}{dt}N_{A}^{\text{reverse}}(t) = k_{Y}(T)N_{N}^{\text{reverse}}(t) \quad \text{reverse annealing - acceptors,} \quad (8)$$

Parameter	IBL [× 10^{-2} cm ⁻¹]	<i>B</i> -layer [× 10^{-2} cm ⁻¹]	ROSE Coll. $[\times 10^{-2} \text{ cm}^{-1}]$
<i>g</i> A	1.4 ± 0.5	1.4 ± 0.5	1.4 (<i>n</i>)
$g_{ m Y}$	6.0 ± 1.6	6.0 ± 1.6	2.3 (<i>p</i>), 4.8 (<i>n</i>)
<i>g</i> c	1.1 ± 0.3	0.45 ± 0.1	0.53 (<i>p</i>), 2.0 (<i>n</i>)

 $V_{\rm depl} = |N_{\rm eff}| \cdot \frac{ed^2}{2\epsilon\epsilon_0},$

where d is the sensor thickness, e is the charge of the electron, ϵ is the dielectric constant, and ϵ_0 is the vacuum permittivity

Full Run 2 IBL Leakage Current

• The IBL Leakage current for the full Run 2 data is shown here:

