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The ATLAS Detector
• Silicon pixel detectors are at the core of the current and planned 

upgrades of the ATLAS Pixel detector 
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ATLAS Pixel Detector
• The ATLAS Pixel detector consists 

of four barrel layers and 2 × 3 disks

• The innermost barrel layer (the 
Insertable B-Layer or IBL) is 
located 3.3 cm from the LHC beam 
line

• By the end of LHC Run 2, the 
integrated fluences for the two 
layers closest to the beam line were:
• IBL: 1 × 1015 1 MeV neq/cm2

• B-Layer: 5 × 1014 1 MeV neq/cm2
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Impact on Physics and Performance
• It is imperative that radiation damage effects be quantified to inform 

operations, offline analysis, and future detector design
• Significant decrease of dE/dx and cluster size for IBL with delivered 

luminosity
• Possible degradation in position resolution 
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Fluence Predictions

• Simulated 1 MeV neq fluence predictions made through the 
ATLAS FLUKA geometry on the left

• Lifetime fluence predictions for the ATLAS Pixel Detector layers 
are shown on the right (since the start of Run 2 on June 3, 2015)

• These simulations are used to check how much radiation damage 
the sensors have been exposed to and can be compared to data
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Silicon Sensors

Thickness:
200 - 250 !m

pitch: 
50 × [250 - 400] !m2

• The ATLAS Pixel Detector layers consist of #$-in-# planar 
oxygenated silicon sensors

n-type bulk%&

MIP: Minimum Ionizing Particle, %&: Lorentz Angle
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Radiation Damage
• Radiation introduces traps in the bulk by displacing a silicon atom from 

its lattice site, resulting in an interstitial and a vacancy (Frenkel pair)

!"

MIP: Minimum Ionizing Particle, !": Lorentz Angle



A. Grummer Slide 8

Part I

•Monitoring of radiation damage effects
ØUse the Hamburg Model* to validate sensor 

conditions data: fluence and depletion voltage

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*M. Moll, ‘Radiation damage in silicon particle detectors: Microscopic defects and macroscopic
properties’, PhD thesis: Hamburg U., 1999, http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis99-040

http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis99-040
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Hamburg Model
• The Hamburg Model simulates leakage current and depletion voltage

Leakage Current Depletion Voltage

difference in leakage 
current before and 

after irradiation
radiation damage 

coefficient effective doping 
concentration

Other variables: V is the depleted volume,  d is the sensor thickness, e is the charge of 
the electron, ! is the dielectric constant, and !" is the vacuum permittivity

fluence

time and temperature dependent 
and include annealing characterization 
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Fluence Monitoring
• The measured (“Data”) and predicted (“Sim”) leakage current as a function   

of integrated luminosity for IBL

• Leakage current is predicted using the Hamburg Model and by fitting the data 
in the dashed region to determine the fluence-to-luminosity factor, Φ/#$%&

• Leakage currents for the other layers : ATL-INDET-PUB-2019-001

Module 
Group

|z|-Range

M1 [-8,8] cm

M2 [8,16] cm

M3 [16,24] cm

M4 [24,32] cm

https://cds.cern.ch/record/2699903
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Fluence-to-luminosity

• The conversion factors are 
compared to those predicted with 
• Pythia + FLUKA
• Pythia + Geant4 

• Two different minimum bias 
tunings are are also investigated*

• Differences between measured 
and predicted Φ/#$%& are most 
likely due to damage factors or 
input particle spectra

*ATLAS Collaboration, A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-
Landshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/record/1474107

• Fluence-to-luminosity conversion factors (extracted from the leakage 
current fits) as a function of z on IBL
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Depletion Voltage
• Calculated depletion voltage according to the Hamburg Model for 

IBL (on the left) and the B-Layer (on the right)

• Depletion voltage data is determined through two techniques: 
cross talk scans and bias voltage scans

• Full depletion is well predicted by the Hamburg Model at lower 
fluences and over predicted at higher fluences
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Digitizer Model
• A schematic of the digitizer model is shown here – start with 

fluence and annealing input and produce induced charge at the 
electrode as output
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Part II
•Modelling of radiation damage effects

ØUse Technology Computer Aided Design 
(TCAD) to implement a non-uniform electric 
field and compute charge propagation inside 
the sensor bulk

ØImplements the Chiochia double trap model* 
(one acceptor trap and one donor trap)

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012

*V. Chiochia et al., A double junction model of irradiated silicon pixel sensors for LHC, NIMA 568 (2006) 51
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Electric Field
• The simulated electric field magnitude in the z direction along the 

bulk depth of an ATLAS IBL sensor 
• Simulation uses the Chiochia Radiation Model through TCAD
• The electric field is averaged over x and y

• The E field at various fluences is shown for the sensor biased at: 
80 V (on the left) and 150 V (on the right)
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Time-to-Electrode

• The projected time - in the absence 
of trapping – for an electron or hole 
to drift from the point of generation 
to the collecting electrode (for 
electrons) or back plane (for holes)

• Using E fields predicted by Chiochia 
model through TCAD simulation

• An exponential distribution, with mean value 1/#Φ, is used to set 
the random charge trapping time
• # is the trapping constant and Φ is fluence



A. Grummer Slide 17

Ramo Potential
• The Ramo potential is calculated 

using TCAD to solve the Poisson 
equation (∇"#$ = 0) and from the 
geometry of the sensor
• Here #$ is the Ramo potential

• Slice of the full three-dimensional 
ATLAS IBL planar sensor Ramo 
potential is shown
• The dashed vertical line (at 25 'm) 

indicates the edge of the primary 
pixel

• Induced charge on the electrode is computed with the Ramo 
potential and the charge trapping location:

shown at y = 0
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Part III
•Model validations

Ø Comparing simulations with data for: charge 
collection efficiency and Lorentz angle

For more detail see:
The ATLAS Collaboration, JINST 14 (2019) P06012
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Charge Collection Efficiency
• Charge collection efficiency as a function of integrated luminosity 

for 80 V, 150 V, and 350 V bias voltage
• The bias voltage was increased during data-taking, so the data 

points are only available at increasing high-voltage values

• The uncertainty on the 
simulation is due to 
model parameters as well 
as the uncertainty in the 
fluence-to-luminosity 
conversion

• Uncertainties on the data 
are due to charge 
calibration drift (vertical) 
and luminosity 
uncertainty (horizontal)



A. Grummer Slide 20

Lorentz Angle
• The change in the Lorentz angle (!") from the unirradiated case as a 

function of integrated luminosity

• Two TCAD radiation 
models are considered: 
Chiochia and Petasecca* 
• The Petasecca model 

predicts a linear electric 
field profile

• Due to the deformation of 
the E field, the mobility 
and Lorentz angle increase 
with fluence

*M. Petasecca et. al., Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors, 
IEEE Transactions on Nuclear Science 53 (2006) 2971



A. Grummer Slide 21

Conclusions
• Measurements and simulations of radiation damage to the ATLAS 

pixels have been presented

• The updated digitization model is now in ATLAS software and is 
aiming to be default in LHC Run 3
• The digitization model is being used for ATLAS upgrade (ITk) 

design studies 

• Modeling radiation damage in the ATLAS software is critical to 
maintain physics performance in Run 3 and for the HL-LHC
• The aim is to improve the model accuracies for input to operations, 

offline analysis, and future detector design
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Additional Slides
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Hamburg Model: Leakage Current
• The Hamburg model is based on this relationship:

• And by replacing α (the radiation damage coefficient) the equation 
becomes: 

• Where the variables are:
• Φeq is the fluence, Lint is the integrated luminosity, V is depleted volume of 

the sensor, ti is the time, and t0 = 1min
• !" = 1.23 ± 0.06 ×10_17 A/cm
•

•

•

• and 
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Hamburg Model: Depletion Voltage

where d is the sensor thickness, e is the charge of the electron, ! is 
the dielectric constant, and !" is the vacuum permittivity
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Full Run 2 IBL Leakage Current

• The IBL Leakage current for the full Run 2 data is 
shown here:


