

Advanced Photon Detection in ANNIE for Next Generation Neutrino Experiments

Emrah Tiras on behalf of ANNIE collaboration

Iowa State University

CPAD Workshop, Madison, WI December 8-10, 2019

ANNIE: The Accelerator Neutrino Neutron Interaction Experiment

- 26-ton Gadolinium (Gd)-loaded water Cherenkov
 Detector.
- Located 100 m downstream from the target of the Booster Neutrino Beam (BNB) at Fermilab.

Main goals:

- Measure the beam induced final state neutron multiplicity & CC inclusive cross section on water.
- Demonstrate new detection technologies:
 - Large Area Picosecond Photodetectors (LAPPDs)
 - Neutron tagging in Gd-loaded water.
 - Possible addition of WbLS

ANNIE Collaboration

- Fermi National Accelerator Laboratory
- Iowa State University
- Johannes Gutenberg University Mainz
- Kings College London
- Lawrence Livermore National Laboratory
- The Ohio State University
- The University of Sheffield
- University of California, Davis
- University of California, Irvine
- University of Chicago
- University of Edinburgh
- University of Hamburg
- University of Warwick

Spring 2019 Collaboration Meeting at Fermilab

Timeline of ANNIE

ANNIE Detector Components

• 26 tons of de-ionized water <u>loaded with 0.2% Gadolinium sulfate (50 kg)</u> as an active medium to capture neutrons and study charged current neutrino interactions.

Flexible, Portable Detector Design

LAPPDs deployable in-situ

- The inner frame attached to the tank lid is an octagonal structure.
- It was designed for 132 PMTs and ~40 LAPPDs which are deployable in-situ
- A unistrut as an LAPPD tracker was mounted at each corner (vertex).

ANNIE Detector in the hall

Bottom view

LAPPD Deployment

- The LAPPD housing is mounted on ¼ inch PVC panel and it slides on the track with Polypropylene sliders screwed on the back of the panels.
- Deployment was successfully tested before the ANNIE detector was installed.

LAPPD panel on a track.

- The housing was designed at UC-Davis.
- It was made of 2-inch thick PVC frame with a ¼ inch UVT acrylic window and thin SS back plate.
- Enough space for LV-HV board, fan, humidity and temperature sensors etc.
- O-rings on both sides of the housing provide water-tightness.
- Water-tightness tests and electronics integration are underway.

LAPPD Housing Design with Electronics

2 ACDC Cards as waveform digitizers

Trigger card in between pickup board and ACDC cards to provide trigger to the ACDCs.

Analog pickup board

LV-HV board to provide power and slow controls

LAPPD housing and electronics integration Matt Wetstein, ISU

LAPPD Characterization at ISU and Fermilab

LAPPD Characterization at Fermilab

QE of LAPPDs

- The QE results of 2 LAPPDs, #37 and #39
- QE characterization of other LAPPDs is in progress at Fermilab.

Timing Characteristics of LAPPDs

Physics Benefits of LAPPDs in Neutrino Experiments

• The addition of 5 LAPPDs greatly improves reconstruction of muon track parameters.

- They enable significant improvement for vertex and track reconstruction.
- They will improve energy resolution, background rejection and aid reconstruction of multitrack events.

Physics Benefits of LAPPDs in Neutrino Experiments

The addition of 5 LAPPDs greatly improves reconstruction of muon track parameters.

- They enable significant improvement for vertex and track reconstruction.
- They will improve energy resolution, background rejection and aid reconstruction of multitrack events.

LAPPD Applicability

Fast timing

- better vertex reconstruction
- ability to reconstruct overlapping events and tracks
- better able to resolve structure of EM showers
- improved background rejection and energy reconstruction in higher energy beams

Cherenkov and Scintillation Separation

- Cherenkov light arrives earlier
- Timing information of photons makes the separation possible.

See also:

J.R. Alonso et. al., arXiv: 1409.5864 B. Wansak et. al., arXiv: 1803.08802 See talk by J. Caravaca in the Photodetectors session on Sunday.

LAPPD Applicability

- **Imaging** is a powerful capability
- Because LAPPDs are imaging photodetectors, their marginal value increases with more dense occupancy. Could we develop interesting schemes to better concentrate the light?
- H₂O Multi-bounce optics (UChicago - Oberla, (1) Frisch, Angelico, Elagin) https://arxiv.org/abs/1510.00947 (2) Plenoptic imaging (intensity, color and directional information) (J. Dalmasson et. al.) https://arxiv.org/abs/1711.09851 A.U. / 0.2 n 0.1 387 (11) nm 405 (10) nm 430 (10) nm 0.08 450 (10) nm Chromatic Separation (by using dichoric filters) (U Penn -(3) 470 (10) nm 494 (20) nm Kaptanoglu, Luo, Klein): Dichroicons 0.04 Google Lange Lange https://arxiv.org/abs/1811.11587 See talk by Tanner Kaptanoglu in the Plenary session on Monday.
- Timing + Imaging photosensors could enable a very different kind of Cherenkov/scintillator detector with the advantage that it can be used to view all different fluxes in same detector.

Beam Timing

- Timing can be used to select different energy fluxes from a wide-band neutrino beam.
- Lower energy neutrinos come from slower pions and arrive later.
- Will require precision time stamping O(100) ps.
- ANNIE might be able to provide a first demonstration of this approach, albeit on wide (1 nsec) bunches.
- It will be more visible in small bunch sizes.

https://arxiv.org/abs/1904.01611

realistic bunches spread out in time

See talk by Evan Angelico in the Diverse Detector session on Sunday.

December 9, 2019

Water Based Neutrino Detectors (ANNIE, WATCHMAN, THEIA)

December 9, 2019

E. Tiras - Iowa State University

CONCLUSIONS

- Physics Phase detector installed and under commissioning
- ANNIE will measure the beam induced final state neutron multiplicity & CC inclusive cross section on water
- ANNIE is pioneering R&D of photodetection technologies/techniques:
 - Neutron tagging in Gd-loaded water
 - 5 LAPPDs characterized at FNAL being readied for installation
 - LAPPD coverage can be expanded in-situ to enable multi-track reconstruction and measurements of more exclusive final states.
 - Possible addition of WbLS to combine the tracking capabilities of Cherenkov reconstruction with the energy resolution and expanded sensitivity of scintillation light.
- Neutrino beam data taking to begin in January 2020.

BACKUP SLIDES

LAPPDs

- 20 cm x 20 cm flat panel, ALD* micro-channel plate (MCP) based photodetectors.
- Gain >10⁶
- Spatial Resolution < 1 cm across strip and < 5 mm along strip (depending on the readout system)
- ANNIE is an early adopter, building and developing new reconstruction techniques.

*ALD: Atomic Layer Deposition

- Incoming photons produce electrons at the photocathode via the photoelectric effect
- Electrons enter microchannel plates (pore diamater ~10 micrometer)
- Collisions with the pore walls produce secondary electrons (Gain > 10⁶)
- Signal collected on stripline anode
- Timing difference between strip ends used to recover longitudinal position

LAPPD General Characteristics

LAPPD #39 General Features and Parameters:

Feature	Parameter
Seal Date	1/17/2019
Photodetector Material	Borosilicate Glass
Window Material	Borosilicate Glass
Photocathode Material	Multi-Alkali (K ₂ NaSb)
Spectral Response (nm)	160-650
Wavelength – Maximum Sensitivity (nm)	≤ 365 nm
Photodetector Active Area Dimensions	195mm X 195mm
Minimum Effective Area	34,989 mm^2 [(195*195)- {(2*265*6) - (6x6)}]
Active fraction with Edge Frame X-Spacers	92% [(195*195)- {(2*265*6) – (6x6)}] / (195 * 195)
Anode Data Strip Configuration	28 silver strips, Width = 5.2 mm, gap 1.7 mm, nominal 50 Ω Impedance
Voltage Distribution	5 taps for independent control of voltage to the photocathode and entry and exit of MCP

LAPPD #39 Operational Ratings

Parameter	Rating
Supply voltage Photocathode — Anode (Volts)	Typical: • 400 V between MCP and photocathode • 975 V/mcp • 200 V between MCPs • 200 V between MCP and anode • Photocathode voltage is -2750 V Maximum: Photocathode voltage at -2900 V
Operating ambient temperature °C	TBD (nominal room temperature)
Storage temperature °C	-12 to 50 (Avoid indium seal melt)

Two 30 channel ACDC cards - inside the housing

ANNE Central Card (ACC) - rack mounted

- LAPPDs with 10GHz digitization.
- ACDC cards attach to the analog pickup board on the back
- the slow controls card will go in the housing (which makes the low and high voltages and monitors everything)

Electronics Design for LAPPDs

- Analog pickup board attaches to the back of the LAPPD and takes the signal from the silver anode microstriplines to Samtec connectors on the back
- Two ACDC mezzanine waveform digitizers attach to the pickup board
- Trigger board attaches at the bridge point between the LAPPD and pickup board and generates the trigger for the ACDC cards
- LV-HV board provides power and slow controls (not yet designed)
- Breakout boxes on the racks power and communicate with the LVHV boards convert to standard cabling from the high density.

ACC card

pickup board

Booster Neutrino Beam (BNB)

- The ANNIE detector is the closest experiment to the proton beam target on the BNB.
- > 700 MeV peak energy.
- 93% v_{μ} purity in the FHC mode.
- 4×10^{12} POT per spill at 5 Hz.
- One v_{μ} charged-current interaction in the ANNIE fiducial volume in every 150 spills (~30 s).

Neutrino beams have a wide energy range.