RD53 Status and the Role of Verification in Digital Design

• CPAD 2019 Dec. 8-10, 2019

• Cesar Gonzalez Renteria (LBNL) on behalf of the RD53 Collaboration

Outline

- Introduction
- RD53 Collaboration
 - What is the mission of the collaboration and what is the final result
- Verification
 - What is verification and how is it used
- Verification of the RD53B Chip
 - Structure of the verification workbench in the case of RD53B

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEERING:

DEFINITION

EXCAVATION / BUILDINGS

RD53 Collaboration

- Focused R&D to develop pixel chips for both ATLAS and CMS upgrades
- Established recognizing that HL-LHC pixel requirements were extremely challenging, yet very similar for both experiment, and a joint effort was the best way to meet them
- At the request of the experiments, last year the mandate of RD53 was extended to design the final production chips for ATLAS and CMS
 - Keep the design team together.
 - Pursue as much as possible a common design to serve the needs of both experiments.
- RD53 has 22 collaborating institutes and many Guests
 - Roughly 20 designers on RD53B Chip (next slide)
 - ~100 conference talks/proceedings/papers to date

Collaboration board chair: Lino Demaria, Torino

Interface to experiments: Co-spokespersons

Jorgen Christiansen, CERN (CMS), Maurice Garcia-Sciveres, LBNL (ATLAS)

General organization, Funding, Specifications,

Experiment observers

Duccio Abbaneo, CERN (CMS), Kevin Einsweiler, LBNL (ATLAS)

RD53 design framework for final pixel chips: Flavio Loddo, Bari; Deputy: Tomasz Hemperek, Bonn

RD53 Collaboration

- US Institutes:
 - Lawrence Berkeley National Laboratory
 - University of California, Santa Cruz
 - Fermi National Laboratory
 - University of New Mexico

Floorplan/integration: Flavio Loddo, Bari

 Pixel array, Bump pad, EOC, Power distribution, Bias distribution, Analog/digital isolation, Integration, Verification

Analog FEs with biasing: Luigi Gaioni, Bergamo; Ennio Monteil, Torino; Amanda Krieger, LBNL

 Specification/performance, Interface, Analog isolation, simulation model, Abstract, Integration, Verification

Monitoring:

Mohsine Menouni, CPPM; Gianluca Traversi, Bergamo, IP designers

 Specification/performance, Interface, Analog isolation, simulation model, Abstract, Integration, Verification

PAD frame: Hans Krueger, Bonn CDR/PLL: Piotr Rymaszewski, Bonn High speed drv: Konstantinos

Moustakas, Tianyang Wang, Bonn Diff. IO: Gianluca Traversi, Bergamo

Testing: Timon Heim, LBNL

Mark Standtke Bonn

YARR system: Timon Heim, LBNL

Digital integration:

Tomasz Hemperek, Bonn; Luca Pacher, Torino

• Simulation Framework: Sara Marconi, CERN;

- Framework, Hit generation/ import MC, Reference model / score board, Monitoring/verification tools, Readout rate estimations, Behavioural pixel chip, SEU injection.
- Pixel array logic: Sara Marconi, CERN
- FE interface, Latency buffer, Core/column bus

Digital chip bottom: Roberto Beccherle, Pisa; Francesco Crescioli, LPNHE; – Configuration, Control interface, Readout data

- Configuration, Control interface, Readout data format/protocol, Compression
- Verification: Sara Marconi, CERN; Attiq Rehman, Bergen, Joel De Witt, Santa Cruz Cesar Gonzales Renteria, LBNL
 - Peilian Liu, LBNL SEU: Pedro Leitao, CERN; Rafael Girona, Sevilla SET: Fernando Munoz Chavero, Sevilla LPGBT: Pedro Leitao, CERN

Mixed signal: Luca Pacher, Torino; Aikaterini Papadopoulou, LBNL – Functional, SEU, Interfaces, specifications

BDAQ53 system: Marco Vogt, Michael Daas, Yannik Dieter, Hans Krueger, Tomasz Hemperek,

Radiation test: Luis Miguel Jara Casas, CERN, Mohsine Menouni, CPPM.

Plus many ATLAS/CMS groups not formally part of RD53

 Library cells: DICE: Denis Fougeron, Mohsine Menouni, CPPM Timing characterization : Sandeep Miryala, FNL

Serial Power:

SLDO: Michael Karagounis, Andreas Stiller, Dortmund. Bandgap: Gianluca Traversi,

Verification: Alvaro Pradas, ITAINNOVA; Stella Orfanelli, CERN; Dominik Koukola, CERN

 Shunt-LDO integration, On-chip power distribution, Optimization for serial powering, System level power aspects, Power Verification

Design for testability:

Giuseppe De Robertis, Bari

 Scan path, BIST, production test patterns, Fault simulation, bump bonding testing

IPs: Support and possible updates Current DAC: Bari Voltage DAC: Prague ADC, mux, temp: CPMM Power on reset: Seville Ring oscillator: LAL

Analog buffer: RAL

Support and services:

Tools, design kit: Wojciech Bialas, CERN Repositories: Flavio Loddo, Bari; Luca Pacher, Torino; Tomasz Hemperek, Bonn Radiation model: Mohsine Menouni, CPPM; CERN

Pixel sensor and bump-bonding:

Fabian Huegging, Bonn (ATLAS), Georg Steinbrueck, Hamburg (CMS)

Names in bold: Member of RD53 management board

5

39

Picture of RD53A, B-ATLAS, B-CMS

RD53B-ATLAS Chip

RD53B-CMS Chip

RD53B Chip Design

- Read-Out ASIC for both experiments which communicates with Pixel Matrix and DAQ system
- Analog portion of chip done the standard way.
- Digital part is extremely complicated and makes up most of the design.

Example of Digital Complexity: I/O

- Three main signals necessary for chip operation:
 - Bunch Crossing Clock
 - Trigger (Synchronous)
 - Commands (Configuration)
- In order to eliminate massive amounts of service lines, designed a scheme that sends all three in one serial stream.

Structure of the Serial Stream

- Designed encoding scheme to make sure signals are synchronous to BC Clock, DC Balanced (AC coupling compatible due to serial power)
- Trigger/Commands sent in 16 bit frames made of 2 8-bit symbols
- Each Trigger/Command has a encoded symbol which defines it (52 total encoded symbols)
- Will comment later on how chip decodes this bit stream

Command	Enco	oding		(T)ag, (A	A)ddress or (D)ata 5-bit (content	
Sync	1000_0001	0111_1110						
PLLlock (noop)	1010_1010	1010_1010						
Trigger	tttt_tttt	Tag[053]						
Read_trigger	0110_1001	ID<4:0>	00,T<7:5>	T<4:0>				
Clear	0101_1010	ID<4:0>						
Global Pulse	0101_1100	ID<4:0>						
Cal	0110_0011	ID<4:0>	D<19:15>	D<14:10>	D<9:5>	D<4:0>		
WrReg(0)	0110_0110	ID<4:0>	0,A<8:5>	A<4:0>	D<15:11>	D<10:6>	D<5:1>	D<0>,0000
WrReg(1)	0110_0110	ID<4:0>	1,A<8:5>	A<4:0>	$N \times (D < 9:5 >$	D<4:0>)		
RdReg	0110_0101	ID<4:0>	0,A<8:5>	A<4:0>				

Output: Aurora Encoding

Output to DAQ is asynchronous

1 Service Data word

Pixel Data:

Possible Data:

Service Data:

Header:

N Pixel Data words

8b Tag

mmil

11b int. Tag

ChID

- Encode multiple signals using Aurora • 64b/66b encoding.
- Industry standard encoding protocol • similar to ethernet protocol
- Makeup of Aurora Frame designed to • be efficient

1 Service Data word

......

10b addr

.

ccol + crow + 2bit BT ToT ... ToT ...

16b Reg data

ccol + crow + 2bit BT ToT

N Pixel Data words

NS = 1 when a New Stream starts NS = 0 if it continues the previous one

ToT

10b addr

.....

ccol + crow + 2 bit

16b Reg data

.............

.....

BT ТоТ

N bit (all 0)

End of Stream

ToT

Digital Chip Design is a Software Project

- System Verilog is a hardware verification and description language similar to C++ but with built in abstractions for hardware objects, ability to manipulate time, and dynamically allocate memory.
- Built from Verilog which was similar to C. Verilog is missing C++-style objects, assertions and coverage groups.
- UVM (Universal Verification Methodology) is a pre-built library written in SV with a full verification testbench structure in place inherited by UVM classes.
- Through Verilog, SV & UVM you can:
 - Write up the logic and parts that make up the chip (DUT).
 - Write up the testbench to stimulate the DUT and analyze the results.

Chip Design Code

** The Chip Design for RD53B is all software!!**

- Digital Code in the Chip:
- There are 123 different SystemVerilog files and each file corresponds (mostly) to one module.
- 87% of files written in SystemVerilog
- There are ~20k lines of code.
- Verification Code:
- There are 392 different SystemVerilog files
- 90% of files written in SystemVerilog
- There are ~120k lines of code.

Other

SystemVerilog

Example: Verifying a FIFO Design

- The top of the workbench is the **test**.
- Sample test can be as follows:
 - Write to FIFO (Driver)
 - Check state and size of FIFO before and after write (Monitor)
 - Read from FIFO (Driver)
 - Check state and size of FIFO before and after read (Monitor)
 - Verify it matches expectation (Scoreboard)
 - I.E. First In First Out

[3]

RD53B Chip UVM Testbench

- **Top Test** instantiates multiple **Universal Verification** Components (UVCs).
- Each UVC is created to test certain blocks of the chip design.
- Each UVC contains its own environment, agent, scoreboard, etc.
- Will show an example of verifying the "CMD" block of the chip

UVC = Universal Verification Component

An Example: Verifying the Command Decoder

Input

- Encoded Serial Stream is received by the Command Decoder
- Command Decoder takes 16 bit frame and decodes each 8 bit data symbol back to original 5 bit value
- Symbol assigned to one of 52 pre-defined symbols

Introducing Verification Structure: UVM Monitor and Driver

Introducing the Second UVM Monitor

Testing Correct Behavior: UVM Scoreboard

Create a Test: Do we see a match?

- 2000 Randomly generated commands sent + extra commands to set up chip
- The data sent with each command is also randomly generated (within allowable values)
- Command Checker finds a match between Decoded and Encoded monitors for every command sent.

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) 8 38746145000: uvm_test_top.m_env.m_cmd_analysis_env.m_cmd_checker [CMD_CHECKER_MATCH] WRITE no auto-increment, address EnCoreColumnCalibration 1, REGISTER Chip #31, data e1 encoded cmd matches decoded cmd WRITE REGISTER Chip #31, no auto-increment, address EnCoreColumnCalibration 1, data e1

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 38896289000: uvm test top.m env.m cmd analysis env.m cmd checker [CMD CHECKER MATCH] TRIGGER Positions of trigger during frame: 0001; trigger tag: 25 encoded cmd matches decoded cmd TRIGGER Positions of trigger during frame: 0001; trigger tag: 25

UVM INFO

/home/cesar gr/RD53B/work/sim/../../cds/../sim/verification environment/cmd/sv/cmd checker.sv(102) @ 39246625000: uvm test_top.m_env.m_cmd_analysis_env.m_cmd_checker [CMD_CHECKER_MATCH] WRITE no auto-increment, address DAC_PREAMP_T_DIFF, data 15 encoded cmd matches Chip #31, REGISTER decoded cmd WRITE REGISTER Chip #31, no auto-increment, address DAC PREAMP T DIFF, data 15

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 39446817000: uvm_test_top.m_env.m_cmd_analysis_env.m_cmd_checker [CMD_CHECKER_MATCH] READ Chip #31, address RingOscRoute encoded cmd matches decoded cmd READ REGISTER REGISTER Chip #31, address RingOscRoute

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_monitor.sv(282) @ 39596961000: uvm test top.m env.m cmd env.m cmd master agent.m cmd monitor [COMMAND MONITORING] TRIGGER Positions of trigger during frame: 0001; trigger tag: 49

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 39647009000: uvm_test_top.m_env.m_cmd_analysis_env.m_cmd_checker [CMD_CHECKER_MATCH] READ Chip #31, address DAC PREAMP_TR_LIN encoded cmd matches decoded cmd READ REGISTER REGISTER #31, address DAC PREAMP TR LIN

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 39797153000: uvm test top.m env.m cmd analysis env.m cmd checker [CMD CHECKER MATCH] TRIGGER Positions of trigger during frame: 0001; trigger tag: 49 encoded cmd matches decoded cmd TRIGGER Positions of trigger during frame: 0001; trigger tag: 49

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 40047393000: uvm test top.m env.m cmd analysis env.m cmd checker [CMD CHECKER MATCH] CAL Chip calEdge mode: 1, calEdge delay: 3, calEdge width: 85, calAux mode: 1, calAux delay: 23 #31, encoded cmd matches decoded cmd CAL Chip #31. calEdge mode: 1, calEdge delay: 3, calEdge width: 85, calAux mode: 1, calAux delay: 23

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_monitor.sv(282) @ 42399649000: uvm_test_top.m_env.m_cmd_env.m_cmd_master_agent.m_cmd_monitor [COMMAND_MONITORING] TRIGGER Positions of trigger during frame: 1011; trigger tag: 23

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/cmd/sv/cmd_checker.sv(102) @ 42449697000: uvm test top.m env.m cmd analysis env.m cmd checker [CMD CHECKER MATCH] WRITE no auto-increment, address VCAL_HIGH, data c8 encoded cmd matches decoded Chip #31, REGISTER cmd WRITE REGISTER Chip #31, no auto-increment, address VCAL HIGH, data c8

UVM INFO

/home/cesar_gr/RD53B/work/sim/../../cds/../sim/verification_environment/emd/sv/cmd_checker.sv(102) 20 @ 42599841000: uvm test top.m env.m cmd analysis env.m cmd checker [CMD_CHECKER_MATCH]

Chip

Over 2000 commands sent to the Command Decoder

æ					Waveform	n 1 - SimVision			_ • ×
<u>F</u> ile <u>E</u>	<u>E</u> dit <u>V</u> iew Ex <u>p</u> lore F	or <u>m</u> at Sim <u>u</u> lation	<u>U</u> VM <u>W</u> indows <u>H</u> elp						cādence
b e 11	e 🖬 🔤 🖉 🔥	× 🗅 🛍 🗙 📜)))))))))))))))))))	Send To: 🕵 🎇 🗟 🎥 📖 🛙	III III III III IIII IIII IIIII IIIII IIII				
Search	h Names: Signal -	11 <i>d</i> h <i>d</i> f	Search Times: Value -	ॼ 前,, 前,	2				
🏓. Tir	meA - = 3.505.639.9; -	fs - 10		3.505.639.921.000fs + 178	Time: 2 0 : 3.505.639.9	21.1 - = = =			
× ①						··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··			
	a Baseline ▼= 0 Cursor-Baseline ▼= 3,505,639),921,000fs	Baseline = 0						
	lame	o- Cursor o-	0		1,000,000,000,000fs		2,000,00	00,000,000fs	[11meA = 3,505,639,921,000ts [3,000,000,000,000fs
	ErrCntRst	0							
₽.	Clear	0							
.		0							
V	Clear_int	0							
	fsm_gen_cal	0							
	• cal_pulse_int	0							
E	EdgeDelay [4:0]	'h 02						₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
	EdgeMode	'h 58							
G		'h 06				(X)(15)(10)()()()()()()()()()()()()(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXCXXX=XXXX=XXXX=XXX0XXXX=XXXX0x=XX	
	Aux/Value	0							
	CalEdge	1							
		o							
	Gen Global Pulse_fsm	0							
	global_pulse_int	0							
		0							
	WrReg int	0							
		0							
	RdReg_fsm	0							
	RdReg_int	0 15.0184							
	Reg Addr [8:0]	'h 073							
	Trigger	0							
E	⊡¶igger_tag_fsm[5:0]	'h 00							
	Trigger 1	0							
	Trigger3	o o							
	Trigger4	0							
C	Trigger Tag [7:0]	'h 00							
Ľ	HeadTrigger_tag_cmd[7:0]	'h 00 0			<u>k k ki kana kana kana kana kana kana kan</u>	₩₩₩_₩_₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		<u>* **** * ****************************</u>	
		0							
G	ead_req_tag[7:0]	'h 00	(•						a ann aga an an am ann an ann agus anns a' an mummulan oo 👘 🔿
		0							
K									
Ø 🐉									0 objects selected

🖾 Terminal (4) 🔅 🧊 cmd

🗘 🌍 cmd random cmds s... 🏻 🎇 Waveform 1 - Si

Example of Verification Catching Bugs: Command Error Test

- I create a Command Error by sending a command with an invalid frame.
- When the following is sent instead of a Cmd Error raised, the command is sent:
 - [WrReg, ChipId][Data, Data][Data, Data][Data, Invalid]

⊡ TeipWngCnt[15:0]	'h 0000	0000																				
BitFlipWngCntRst	0																					
····· 📑 BitFlipErr	1																					
······· 🔤 BitFlipError	0																		L			
BitFlipErrCnt[15:0]	'h 0014	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	0008	0000	000p	000 E	000	0010	0011	0012	0013	0014
BitFlipErrCntRst	0																					
····· 📫 CmdErr	1																					
······· 🔤 Error	0																					
9 💽 Err Cnt [15:0]	'h 032B	0170))(000000)	000000000)0000000000)))0000000)000000000	0000000)))0000000)%0000000)))000000))))00()(00()(0	00000000000	00000000)))))))))))))))))))))))))))))))))))))))	0000000000)))00))00)()))00000			026D
Err CntRst	0																					
时 🔛 WrReg	0																					
	0																					
······	0																					
																				22		

Verification of Full RD53B Chip

Name

- What does it take to verify a full chip?
 - A large number of tests written
 - REMEMBER: Over 119K lines of code written just for verification
- Large number of tests necessary to ensure complete **code coverage**.
- Overall 96% of code covered
 - Excluded Analog (vcd/ams) verification

	Block Covered Grade	Toggle Covered Grade	Code Covered
(no filter)	(no filter)	(no filter)	(no filter)
🔺 耶 pixel_chip	95.99%	82.49%	70305326 / 82533720 (85.
🔺 🎩 ChipBottom	83.14%	76.67%	648606 / 819186 (79.18%)
PixelArrayReadout	82.57%	75.59%	535997 / 681400 (78.66%)
TwoFFSyncNoCmdResetB	✓ 100%	33.33%	4 / 8 (50%)
RINGOSC_BLOCK_A	90.24%	73.73%	613 / 813 (75.4%)
RINGOSC_BLOCK_B	88.67%	100%	2752 / 2792 (98.57%)
🔺 🎩 DigitalChipBottom	95.15%	81.73%	106553 / 127824 (83.36%
ResetPulseCalGenerator	99.15%	96.43%	279 / 286 (97.55%)
🕨 🎩 SelfTrigger	✓ 100%	12.1%	2513 / 3058 (82.18%)
I ChannelSync	96.47%	75.67%	327 / 403 (81.14%)
🕨 💷 CommandDecoder	98.07%	89.08%	1326 / 1425 (93.05%)
III GlobalConfiguration	98.08%	83.44%	6758 / 7913 (85.4%)
🕨 🎩 TriggerTable	93.51%	88.1%	34904 / 39180 (89.09%)
DataConcentrator	96.05%	83.2%	36594 / 43761 (83.62%)
CdcResetSyncAurora	100%	100%	21 / 21 (100%)
CdcResetSyncDataMerger	✓ 100%	100%	21 / 21 (100%)
OutputCdcFifoAurora	100%	99.01%	1225 / 1237 (99.03%)
🕨 🎩 ServiceData	81.65%	87.59%	1260 / 1464 (86.07%)
🕨 🥼 ServiceCdcFifoAurora	✓ 100%	92.51%	1004 / 1084 (92.62%)
💷 auroraDesData[0]	n/a	100%	2 / 2 (100%)
🕼 auroraDesData[1]	n/a	100%	2/2(100%)
🕼 auroraDesData[2]	n/a	100%	2/2(100%)
💷 auroraDesData[3]	n/a		0 / 2 (0%)
🕼 auroraDesData[4]	n/a	100%	2/2(100%)
🕼 auroraDesData[5]	n/a	100%	2/2(100%)
🕼 auroraDesMonitor[0]	n/a	100%	2/2(100%)
auroraDesMonitor[1]	n/a	✓ 100%	2/2(100%)
4 auroraDesMonitor[2]	n/a	✓ 100%	2/2(100%)
🕼 auroraDesMonitor[3]	n/a	0%	0 / 2 (0%)
auroraDesMonitor[4]	n/a	✓ 100%	2 / 2 (100%)
auroraDesMonitor[5]	n/a	100%	2 / 2 (100%)
🕨 💷 DeserAurora	95.33%	64.3%	13168 / 20074 (65.6%)
💷 auroraMergedData	n/a	✓ 100%	2 / 2 (100%)
📳 MergerDataArbitrer	✓ 100%	86.67%	54 / 58 (93.1%)
🔱 auroraMergedMonitor	n/a	✓ 100%	2 / 2 (100%)
MergerMonitorArbitrer	100%	86.67%	54 / 58 (93.1%)

Conclusion

- RD53 Collaboration is working on the production read-out chips for ATLAS and CMS
- ATLAS Chip Submission on Jan. 15, CMS a few months later
- Verification is a cornerstone of chip design and fabrication
- Making up 60-70% of the chip design, a comprehensive and flexible verification methodology is necessary
- Universal Verification Methodology and SystemVerilog used to ensure the proper behavior of the chip design
- Extensive simulation and verification program essential for the design of the final chip

Backup

RD53B New Features

- Selected Diff. Front End for ATLAS, Lin. FE for CMS
- Added edge, top, and corner pixel biases
- Upgraded calibration injection & corrected column variation
- New hit synchronization and ToT with 6b-to-4b compression
- Redesign of the startup and generation of reference voltages
- Improvement of SLDO and addition of low power mode
- Addition of overcurrent and overvoltage protection
- Redesigned PLL for lower jitter and robust locking

- Added trigger tags and new readout format with compression
- Added 2-lever trigger for ATLAS and self-trigger
- Added suppression of low charge isolated hit backgrounds
- Added data aggregation between chips
- Changed reset scheme to synchronous and added CMD activity reset
- Extensive triplication and SEU hardening
- Added new resistive temperature sensors and Efuses for SN
- Added precision ToT and ToA
- Enlarged wire bond pads

RD53A Pixel Floorplan

- Pixel matrix build from 8 x 8 pixel cores
- One Pixel Core contains multiple Pixel Regions with shared logic and trigger latency buffering
- FEs are placed as analog islands in the "digital sea" of synthesized core logic
- All cores are identical

AFE 35 15

PIXEL

ANALOG ISLAND

One flat synthesized circuit

~ 200k transistors

64 pixels in 16 "analog islands"

Whole core is stepped and repeated to make the

Hand-drawn transistors

"compiled software"

RD53A: Powering

Baseline for powering the ATLAS and CMS HL-LHC pixel detectors: serial powering

- Low mass, Not sensitive to voltage drop, Low noise
- Up to 4 chips in parallel resolve single chip failures

RD53A Shunt-LDO regulator

Vin

- Low-drop linear voltage and a shunt regulator
- Three operational modes (direct, LDO and ShuntLDO)
- Analog and Digital voltage rails
 LDO Shunt

8A (4A), 12V

Output from the Chip(s)

Chip Output Data:

- There are 1 to 4 Aurora64/66b @1.28GB/s encoded lanes that form a Simplex Aurora Channel. The Data has strict alignment. [always Same data type on all Lanes]
- Optionally it has one or two 320Mb/s (640Mb/s, if working) Aurora64/66b encoded Lanes that form a Simplex Aurora Channel only used for on chip data merging.

Aurora Channel contents:

Each Aurora Channel might contain Pixel Data, Service Data or No Data.

- Pixel Data: Continuous stream of 66 bit Aurora Frames, without separators.
 Each frame is identified by a '01' header followed by 64 bit of data.
- Service Data: Single Aurora Frame identified by a '10' header followed by 64 bit of data.
- No Data: Standard Aurora Idle Frame, also identified by a '10' header.

Service Data:

- A single Aurora Frames that contains the value of two RD53 registers (Global or Pixel).

Pixel Data:

- All data coming from pixels is split into 64 bit wide Aurora Frames.
- Data is generated inside the chip and put in variable length streams.
- Each pixel chip always produces an unknown number of concatenated data streams.
- For each incoming Trigger an outgoing Event will be produced [no event suppression]

Output Data [1, 2, 3, 4 links]

The Output Data Stream is sent on 1, 2, 3 or 4 different Aurora physical Lanes. Each link is logically split in two separate channels:

Pixel Data and **Service Data** where the ratio between the two is user programmable.

- 1. Ratio **R** between Pixel Data and Service Data is user programmable.
- 2. As an example a ratio R = (1 over 50) allows for ~100Mb/s of Service Data

New Feature Highlight

- Encoding with lossless compression used to send data off chip.
 - Custom serial stream encoding to achieve compression AND be tolerant of corrupted fragments
- Important because, thanks to serial power, services volume (and mass) is dominated by data cables.

For designed serv

module CommandDecoder (
//		
// Outputs		
output logic Trigger,	// Trigger signal. Uses TriggerTag.	
output logic [7:0] TriggerTa	// The 8 bit tag associated to each Trigger signal	
output logic ReadTrigg	, // Signal used to readout data from the chip.	
output logic [7:0] ReadTrigg	Tag, // The 8 bit tag associated data to ReadTrigger	
output logic Clear,	// Clear the whole data path	
output logic RdReg,	<pre>// [Only if ChipId matches]</pre>	
output logic WrReg,	<pre>// [Only if ChipId matches]</pre>	
output logic WrRegMode	<pre>// 0 if Single WrReg command, 1 if continuous mode</pre>	
//		
output logic [8:0] RegAddr,	// Address of the register	
<pre>output logic [15:0] RegData,</pre>	// Data to be written in the addressed register	
output logic [15:0] BCIDCnt,	<pre>// synopsys keep_signal_name "BCIDCnt" // BCID counter value</pre>	
output logic [15:0] TrigCnt,	// synopsys keep_signal_name "TrigCnt" // Trigger counter valı	le
output logic [15:0] ReadTrigC	, // synopsys keep_signal_name "ReadTrigCnt" // ReadTrigger counter	value
output logic [15:0] ErrCnt,	// synopsys keep_signal_name "ErrCnt" // Error counter value	
output logic CmdErr,	// There is an Error	
output logic [15:0] BitFlipWn	nt, // synopsys keep_signal_name "BitFlipWngCnt" // BitFlip Warning cou	ınter value
output logic BitFlipWn	// There is a BitFlip warning	
output logic [15:0] BitFlipEr	nt, // synopsys keep_signal_name "BitFlipErrCnt" // BitFlip Error counte	er value
output logic BitFlipEr	// There is a BitFlip error	
output logic [15:0] SkippedTr	gerCnt, // synopsys keep_signal_name "SkippedTriggerCnt" // Skipped Trigger cour	nter value
output logic SkippedTr	gerCntWng, // There have been skipped triggers [to ServiceData]	
//		

devel

✓ RD53B / rtl / top / + ✓

Checked how the Clear command is processed inside the chip. Now everyth
Roberto Beccherle authored 5 days ago

// GlobalPulse

output logic GlobalPulse,

// Signal used to generate all GlobalConfiguration pulses

Name	Last commit	Last update
ChipBottom.sv	Checked how the Clear command is processed inside the chi	5 days ago
CoreColumn.sv	Use VCAL* according to V* naming convention	8 months ago
PixelArray.sv	BUG: fixed hit-or endianess mismatches across the design hie	4 weeks ago
RD53B.sv	FIX: Now if the ChipId changes while a Slow command is exec	6 days ago

Channel Synchronizer

- In order to lock to a frame alignment we use a Channel Synchronizer
- It receives a "sync" command from the input bitstream
- C.S. then lines up with the start of the frame (align itself to frame boundaries).
- Sync command sent multiple times to ensure locking of frame alignment.
- Once locked, C.S. starts command transmission to the Command Decoder

Verification approach

1. Constrained-random tests

- Random inputs (e.g. hits and triggers at operating conditions, from physics Monte Carlo simulations, input commands with random errors...)
- Automated pixel array verification
- Semi-automated command, configuration and aurora verification
 → increase automation: e.g. configuration reference model, self-correction of errors as in the protocol

2. Directed tests

- Specific test cases aimed to verify single functions and specific test cases not covered 1.
 - o mostly used for custom command sequences, injections, etc.
- Quite a few tests checked by looking at waveforms for RD53A. Aim to automate (assertions, ref.model, etc.

3. Analog/digital interface

- Generation of stimuli for full-spice analog simulations (dump vcd for analog designers)
- Others: mixed signal simulations in analog and/or dedicated tests in digital (AMS model + Real Number Model planned for analog blocks of Analog Chip Bottom, AFEs RNM considered)

30

Interfacing UVM to the DUT

- SystemVerilog interfaces between UVM components and DUT
 - defined in the top level verilog module (we call it *pixel_chip_harness*)
 - linked to the UVM world by setting them in the uvm_config_db (in pixel_chip_tb.sv)
- Main interfaces and transactions defined:

 Hit interface Analog input hit signal 	Trigger interface • Input trigger signal	Cmd interface • Input commands	Output data interface aurora • Output of the Aurora receiver	 Analysis interface (optional) Virtual flag signals related to DUT status for statistical information collection (dead time, buffer occupancy,)
--	---	--------------------------------------	---	---

hit_trans	trigger_trans	cmd_trans	hit_trans	analysis_trans			
<pre>+time_ref: int +hits: hit []</pre>	+time_ref: int	+cmd_type: cmd_type_t 	<pre>+time_ref: int +hits: hit []</pre>	 DUT-specific data members (e.g. pixel dead-time,			
hit struct:		+reg_addr: GCR_addr_t	The aurora monitor builds a hit trans for	buffer full) •••			
+charge: unsigned int +delay: unsigned int +col: unsigned int +row: unsigned int		Transaction with many fields to cover all command types (including configuration commands)	the pixel array scoreboard				

Example interface UVC: hit

- Hit generation of input stimulus handled by:
 - hit master sequencer (structural component that runs a sequence)
 - sequence (of transactions)
 - o driver drives to the hit interface
- Hit monitoring
 - handled by the hit monitor in the agent (the latter is just a wrapper)
- The basic objects being exchanged are hit transactions
- Statistic collection:
 - Hit subscriber responsible of dumping/analyzing generated hits (histograms, hit rate computation,..)
- Configurability through the tests and configuration database
- Note: blocks _tlm created for DUT @TLM description: for RTL, additional driver/monitor with _sig2tlm, _tlm2sig (conversion from/to signal level)

Why Verification is so Important?

- Increasing complexity of IC design means much higher chance of errors and bugs present in final product.
- Verification ensures (to an extent) the design is bug free and behaves as expected.
- This results in an overall faster design process which avoids major errors that could mean product recalls, time syncs, etc.

What is Verification?

- Ensure the design of the chip is accurate to specification/function/applic ation.
- Basic Steps of Verifying the Design Under Test (DUT):
 - Generate stimulus
 - Apply stimulus to the DUT
 - Capture the response
 - Check correctness of response
 - Measure progress against overall verification goals
 - Ensure maximal coverage

Universal Verification Methodology (UVM)

- Created in 2011 by Accellera to be used by all three major electronic design automation (EDA) companies: Cadence, Mentor, Synopsis
- Pre-built library and extensive documentation as guidance to reach greatest coverage in verification in a highly efficient manner.
- Contains many useful features:
 - Standard sets of base classes for data and environment
 - Utilities for managing log files and inter-process communication
 - Highly customizable reporting features.
 - Design for reusability

Top-down design of UVM Library

- Classes inherited from uvm_object
- **uvm_component:** Used for structural classes
 - Part of the framework for the full simulation run time.
 - Ex: uvm_driver, uvm_monitor, etc.
- **uvm_transaction**: data item or sequence item
 - Multiple instances created and deleted during runtime.

RD53A Results: Analog FE Characterization

- Verify the functionalities of the three FEs
- Tests with bare chips and 50x50 μ m² sensors with different settings
- Overdrive: difference between threshold and in-time threshold

RD53A Results: Analog FE Characterization

- Measure how many pixels have noise occupancy > 10⁻⁶ hits/bc as a function of the mean threshold
- Procedure:
 - ✓ tune
 - ✓ lower global threshold
 - ✓ retune pixel threshold (except for the SFE)
 - ✓ measure (in-time)threshold
 - ✓ measure noise
- Dependent on the tuning procedure (assumed that the threshold distributions is Gaussian)
- Cold Bare Chip

RD53A Results: Realistic Hit Rate

- Kr-85 beta source with activity 60 mCi (opening window 19 mm)
- Estimated hit rate: 7 × 10⁻⁴ hits/bc

11

RD53A Results: Analog FE Characterization After Irradiation

• Noise for different current settings (for 0, 200, 300, 500 Mrad)

Threshold distribution after 1 Grad irradiation of a bare chip

13

References

- Performance of the CMS Tracker Optical Links and Future Upgrade Using Bandwidth Efficient Digital Modulation - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Cross-sectional-view-of-the-CMSdetector-11-The-HCAL-contains-and-measures-the_fig3_41217449 [accessed 3 Dec, 2019]
- 2. <u>https://anysilicon.com/verification-validation-testing-asicsoc-designs-differences/</u>
- 3. Francesconi, Juan Ignacio et al. "UVM based testbench architecture for unit verification." 2014 Argentine Conference on Micro-Nanoelectronics, Technology and Applications (EAMTA) (2014): 89-94.