

Scintillation Light Detection in SBND

Vincent Basque for the SBND Collaboration

Neutrino Oscillation

09/12/2019

Short-Baseline Neutrino Programme

Short-Baseline Neutrino (SBN) programme at Fermilab consist of 3 LArTPCs at different baseline to probe $\Delta m^2 \sim 1eV^2$.

Booster

Neutrino Beam

SBN Near Detector

MicroBooNE

SBN Far Detector

MANCHESTER

1824

What Physics can SBND do?

MANCHESTER

- Measure unoscillated neutrino flux for SBN
 - Crucial for the sensitivity of oscillation measurement
 - Highly correlated interactions in near and far detectors (same detector technology and target)
 - Control systematic uncertainties for sterile neutrino search
- Become the world's highest statistics cross-section on LAr with ~7 Millions of v_{μ} interactions in 3 years
 - Allows precision measurements of exclusive event topologies
 - Quantify nuclear effects in v-Ar scattering
- BSM Physics (examples for SBND):
 - Sub-GeV Dark Matter (electron-scattering)
 - Neutrino and dark trident (arXiv:1406.2332)
 - Probing the Higgs Portal (arXiv:1909.1167)

Vincent Basque | CPAD 2019

Liquid Argon Time Projection Chambers

MANCHESTER

09/12/2019

Ionization signals:

Scintillation signals:

- Very good scintillator (40,000/MeV at E=0)
- Triggering (beam vs background events)
- Localizing neutrino events (MicroBooNE)

- Active elements:
 - Baseline: 120 8" Hamamatsu PMT's (96 TPB coated)
 - R&D: X-ARAPUCA + ARAPUCA

Passive element:

- Wavelength-Shifting Reflective foils.
- Total surface area of ~38 m² to cover on cathode(Largest area to date!)

MANCH

See David Rivera

ARAPUCAs & X-ARAPUCAs

The University of Manchester

(X-)ARAPUCAS are light traps that increases the effective area of SiPMs using a combination of wavelength-shifters (WLS) and a dichroic filter

- PMT VUV + visible sensitive
- PMT visible sensitive
- X-ARAPUCA VUV sensitive
- X-ARAPUCA visible sensitive
- ARAPUCA (VUV sensitive)
- ARAPUCA (visible sensitive)

Wavelength-Shifting Reflective Foils

- 3M DF2000MA (38 um) laminated on 0.8 mm FR4 (lamination performed at IIT).
- 64 plates are required for SBND coverage (128 evaporations for double-sided)
- Evaporations split between Manchester and Unicamp.

SBND High Light Yield + Coverage Physics

The University of Manchester

1824

MANCHESTER

MANCHESTER

- Warm cryostat steel structure installation: November
- TPC assembly: ongoing winter/spring 2020
- Membrane cryostat installation: begin spring 2020
- Moving and installing detector: fall 2020
- Filling and commissioning: 2021

- SBND's high coverage diverse photon detection system will have a large impact to both SBN physics and R&D for future LArTPCs in a neutrino beam.
- Sensitivity to both VUV direct and VIS reflected light through PDS + Wavelength-shifting foils.
- SBND's PDS status:
 - PMTs tested at LANL and will be on their way early 2020
 - ARAPUCA/X-ARAPUCA are in production and will be installed with PMTs
 - Wavelength-shifting reflective plates and mesh assemblies are ready for installation on cathode.

• Busy next year(s) for SBND!

244 Total Collaborators

198 Scientific Collaborators (faculty/scientists, postdocs, PhD students)

39 Institutions

23 US Institutions

- 4 DOE national laboratories
- 19 US universities

16 International Institutions

- 5 Brazilian universities
- 1 Paraguayan university
- 1 Spanish university, 1 national lab
- 1 Swiss university
- 6 UK universities

CERN

 A diffuser system installed at the cathode using a laser (Q1-B semiconductor laser class 3B) with two wavelengths (211 nm and 537 nm) will be used to calibrate the PDS.

Parameter	Specified	Measured
Laser pump current	INFO	170 A
Pulse energy @532 nm	INFO	2.1 mJ at 170 A
Pulse energy @213 nm	$0.5\mathrm{mJ}$	0.55 mJ at 170 A
Energy stability @ 532 nm	<2.5 % RMS	2.1 % RMS
Energy stability @ 213 nm	<3.5 % RMS	3.3 % RMS

SBND PMTs

- 120 sandblasted 8" Hamamatsu R5912-mod PMTs readout by CAEN V1730 will make the primary PDS of SBND (60 per TPC side).
- 96 are covered with TPB to wavelength shift VUV light (sensitive to both VUV and VIS).

• 24 are non-coated making them only sensitive to visible reflected light.

MANCHESTER Summary of scintillation light in liquid argon

The Universitv of Manchester

1. Emission:

Excited argon dimer dexcites to emits 128 nm photons (VUV).

2. Propagation:

- VUV scintillation is absorbed by most material (except liquid argon itself).
- Rayleigh scattering (~55 to 110 cm) and absorption (~30 m).

3. Detection:

- Typical PMTs and SiPMs are blind to VUV scintillation which makes the detection challenging.
- Solution? use Wavelength shifting compounds, like Tetra-Phenyl Butadiene (TPB).

Transmittance and reflectance with TPB

MANCHESTER

The University of Manches

1824

TPB evaporation

- 64 plates are required for SBND coverage (128 evaporations for double-sided) + spares.
- Heating up slowly the TPB filled cup up to 245°C and evaporate on plate.
- Manchester and Unicamp have split the task (both have the same evaporation setup).

Assembly

- Cool down (with LN2) the frame to shrink.
- Screw the mesh-foil-mesh configuration in before before subframes warms up.
- Let the assembly expand and lock in place. Repeat 16 times!

Installation on SBND cathode

The University of Manchester

• Metal mesh to keep electrical field uniform and constant.

- N6.0 argon with alpha source in vacuum chamber with a PMT.
- Foil sample located above the PMT.