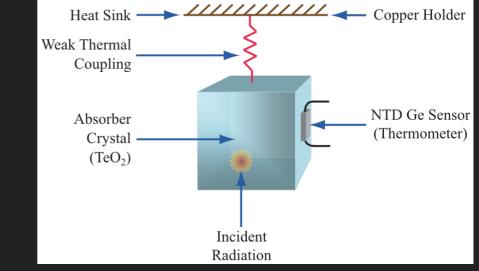
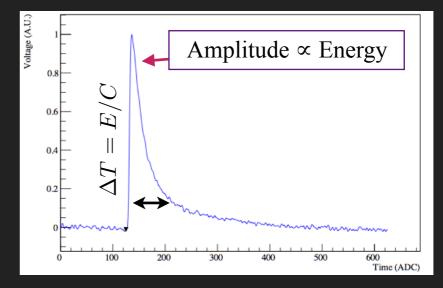
Development of Highly-Multiplexed TES Readouts for Low-Background Macrocalorimeters

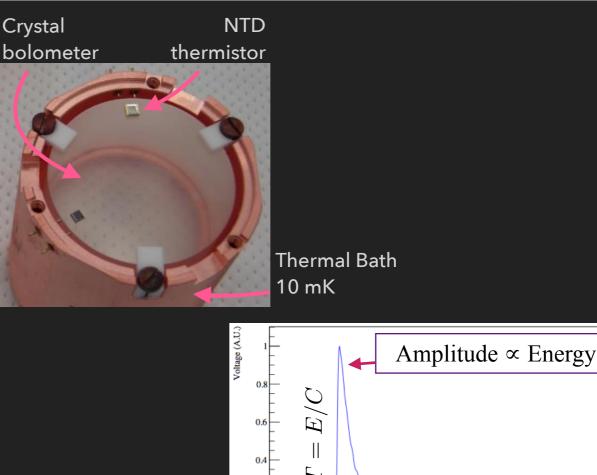

Jonathan Ouellet

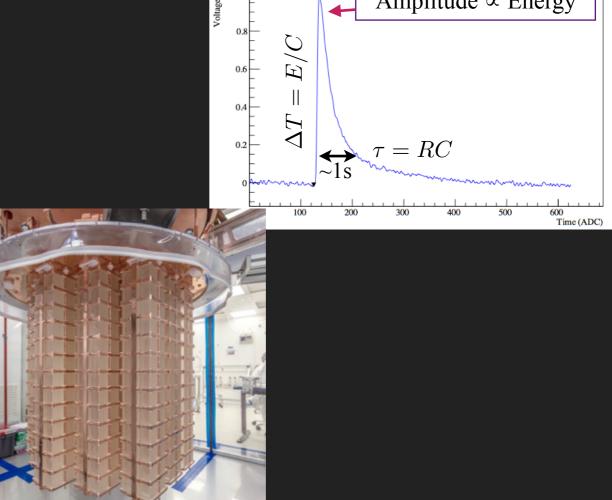

Massachusetts Institute of Technology


December 8, 2019

Thermal Detectors

- Converts deposited energy into a change in temperature of the detector
 - Energy \rightarrow Phonons \rightarrow Phonon detection
- Consists of an absorber and thermometer
- Microcalorimeter → small mass absorbers (≤1 gram)
 - Bolometer arrays (cosmic microwave background)
 - Single photon counting (nano-bolometers)
 - Can be fabricated onto boards
- Macrocalorimeters → large mass absorbers (from grams - kilograms)
 - Large target mass (neutrino & dark matter), large isotope mass (β-decay, ββ-decay), etc
 - Typically measuring individual events
 - Instrumented individually



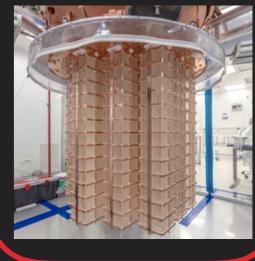


Macrocalorimeter Detectors

- Detectors are segmented
 - Position reconstruction, background identification, etc
- ▶ Excellent energy resolution \rightarrow ~0.2% FWHM
- Excellent detection thresholds \rightarrow < 1 keV_{ee} for DM
- Absorbers can be made from a variety of materials for a range of purposes
 - ▶ Mo, Te, Se \rightarrow 0v $\beta\beta$
 - ▶ Ge, CaWO₄ \rightarrow Dark Matter
 - Superconductors \rightarrow CEvNS
- Easily scalable into large arrays. Current detectors operating ~ton scale detectors with 1000s of channels.

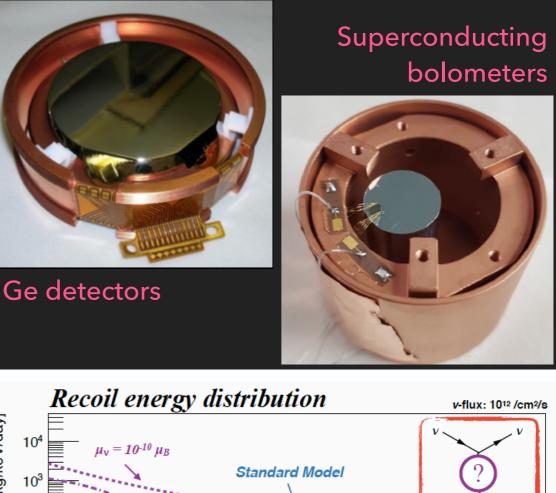
3

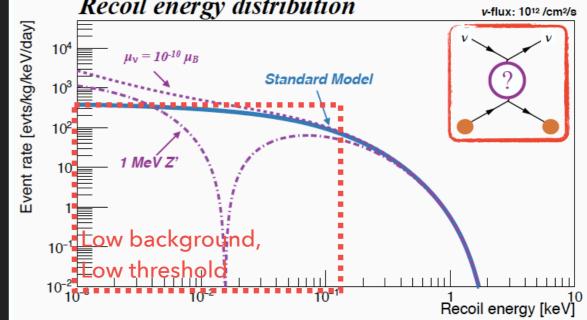
Neutrinoless Double Beta Decay (NP)


- Question of the Dirac/Majorana nature of the neutrino
 - Beyond the SM generation of neutrino mass (seesaw mechanism)
 - Demonstrates violation of lepton number and has implications for baryon asymmetry of the universe
- Listed as a priority in the 2015 DOE NSAC long range plan
 - CD-0 Mission Need for next-generation ton-scale
 0vββ experiment
- Currently CUORE is the largest running macrocalorimeter experiment
 - ► O(1000) channels
 - Using $\sim G\Omega$ NTDs with O(1000) readout channels
 - CUPID looking to instrument O(2000) readout channels

CUPID-0 / CUPID-Mo Absorber: LiMoO₄, ZnSe Light Detector: Ge Thermometer: NTDs Mass: 5-10 kg

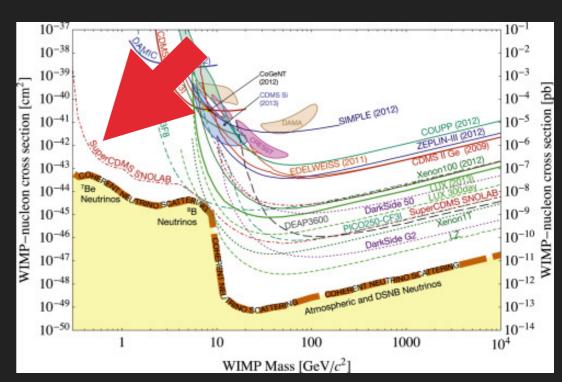
Thermometer: NTDs Mass: 741 kg



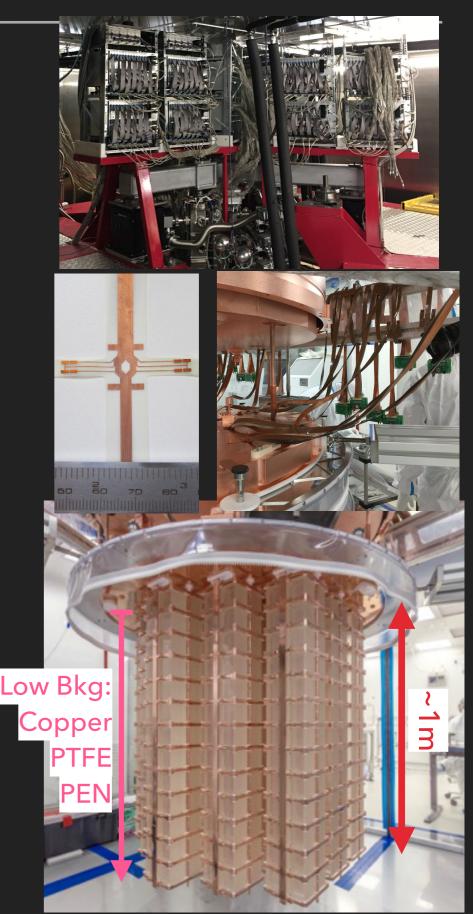

AMoRE Absorber: CaMoO₄ Light Detector: Ge Thermometer: MMC Mass: 5-10 kg

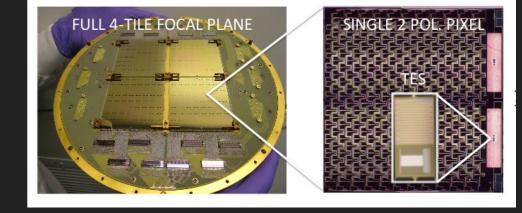
Coherent Elastic v-Nucleus Scattering (NP/HEP)

- Low energy tests of weak interactions
 - New force carriers, neutrino magnetic moment, sterile neutrino, etc...
 - Non-proliferation applications
 - High interaction cross section, but very low recoil energy
- Requires large target masses, low thresholds, and low backgrounds

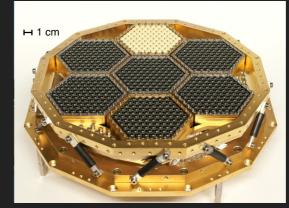


Low Mass WIMP Dark Matter (HEP)


- Low mass dark matter
 - Asymmetric dark matter models
- Running experiments like CDMS, Edelweiss, CRESST
 - Already employing TES based readouts, on a small number of channels
 - Small multiplexing factor
- Lower thresholds may require smaller mass absorbers
 - May increase channel count for same mass
- Additional techniques like Luke-Neganov amplification
 - Extremely promising for low thresholds, but adds a different set of challenges
 - May not be possible for exotic (superconducting) materials

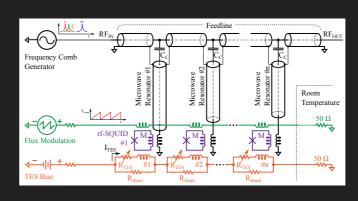

Outline of the Basic Needs

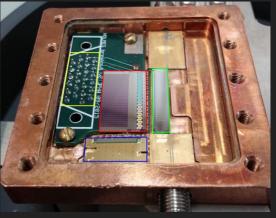
- Larger distance: Signals need to travel distances of ~1m with very low loss (loss ↔ noise)
- Low Radioactivity: All materials near to detectors must be ultra-low radioactivity
 - Materials above shields need to be low radioactivity, but requirements are less stringent
- Multiplexing: Need to be capable of instrumenting 100~1000s of channels
 - Extremely challenging to wire each channel individually
 - Detector working points need to be individually set
- Lower Temperatures: Operation at (bath) temperatures of 10~50 mK
- Bandwidth: Signal bandwidths in the 100 kHz range
 - Next generation 0vββ detectors will need ~100 µs timing resolution
 - CEvNS and Low Mass WIMP detectors require the bandwidth to perform PSD between signal-like events vs background-like events



Not Reinventing the Wheel on Multiplexing

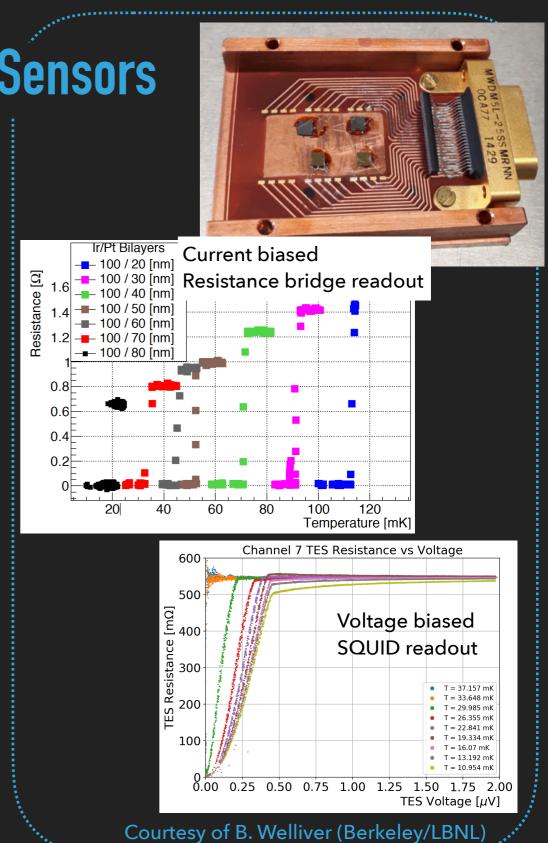
- CDMS has been using TES readout sensors for small number of channels
- CMB experiments have been using large arrays of multiplexed microbolometers
 - Current generation of detectors are instrumenting O(5,000) channels
 - Next generation (CMB-S4) instrumenting ~500,000 channels
- ¹⁶³Ho-based direct neutrino mass experiments
 - Expandable detector made of an array of 1024-channel boards
 - NIST designed rf-SQUID multiplexing
- Large arrays of onboard microcalorimeters
 - Micro-fabrication production
 - Detectors sizes ~10 cm
 - Typical temperatures of 100-300 mK
 - Detectors can typically be biased together


Keck Array ~2500 channels



SPTpol 1600 Channels

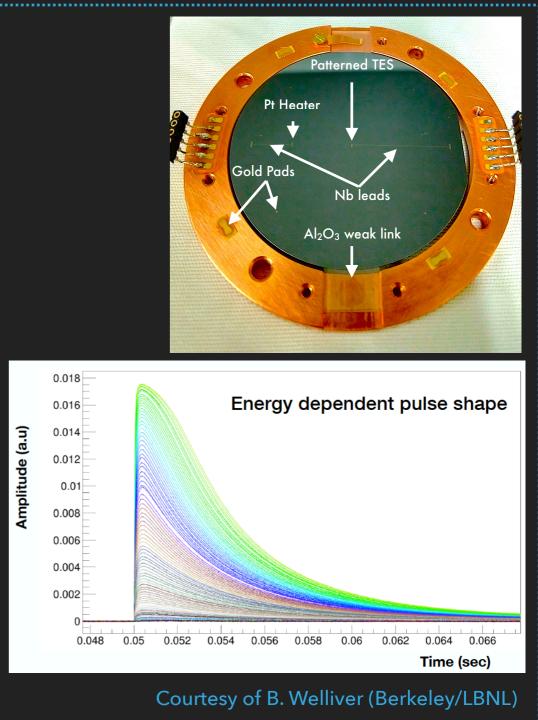
Coordinating Panel for Advanced Detectors, Madison, Wisconsin



TES READOUT R&D FOR

CUPID

Development of Low Temperature TES Sensors


- UC Berkeley with Argonne collaborating to develop bilayer TES sensors with low T_cs
 - Tested in a cryogenic facility at UCB
- Ir/Pt bilayers and Au/Ir/Au trilayers showing promise
 - \checkmark Demonstrating transitions as low as ~20 mK
 - Ability to tune the precise transition temperature by adjusting layer thickness
 - Transitions stable over time and consistent across a single wafer
- Other TES parameters like R₀, α, β can be tuned by adjusting other production parameters (like heating, cooling times, patterning etc)
 - X α values estimated to be of O(100), $\beta \sim 1$. But this is not precisely measured yet
 - ✗ Need to determine optimal TES patterning
- X Production (nearly) robust and repeatable

10

Already Deploying these Low Temperature TES Sensors

- Already operating a Ge wafer instrumented with a TES sensor as a light detector
- Currently operating at 32 mK
- Able to observe injected pulses
 - Decay times: ~4 ms
 - ▶ Rise times: ~200 us
- Still need to optimize the electrothermal circuit and working point
- Demonstrated ability to identify pulser pulses separated by 70 us
 - Pileup rejection for 0vββ experiments
 - Maybe useful for PSD for particle ID

Investigating dc SQUID based multiplexing with frequency

Set by the bandwidth of the dc-SQUID (feedback circuit)

Each bias frequency can have its power individually set

Low background wiring needs to have ~10 MHz bandwidth

Injecting frequency bias comb with a set of LC resonators to

dc Multiplexing Readout

Can achieve multiplexing factor O(10)

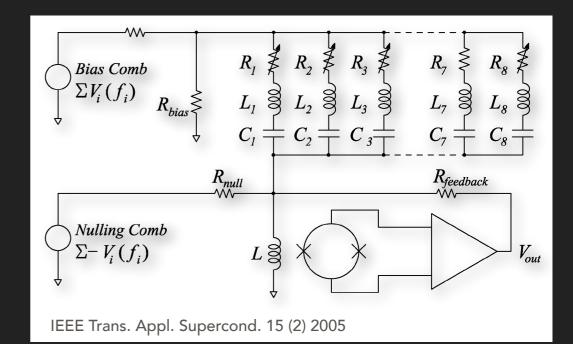
address each TES individually

comb

X Magnetic flux & capacitive noise

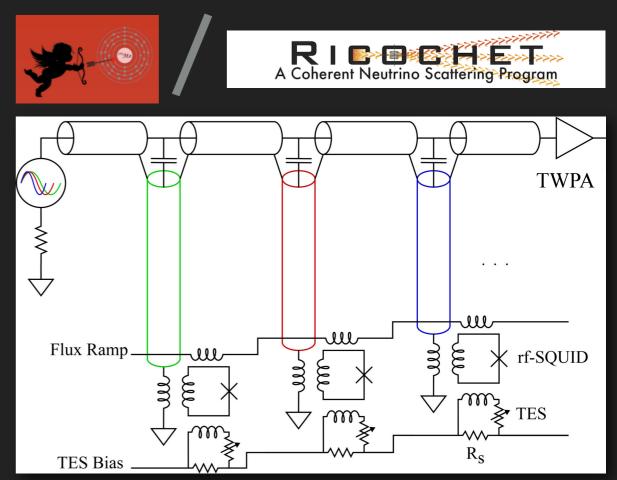
X Signals need to travel the ~meter distance between the TES

Being developed at Berkeley as part of CUPID

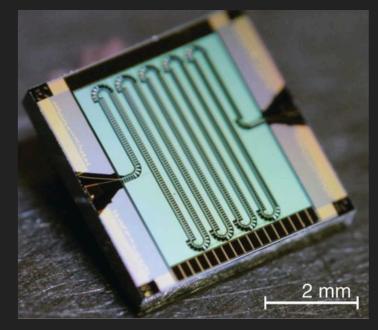

X Setting the width of the resonators

and SQUID on carrier frequency of ~MHz

No results yet, electronics are built, testing to begin soon

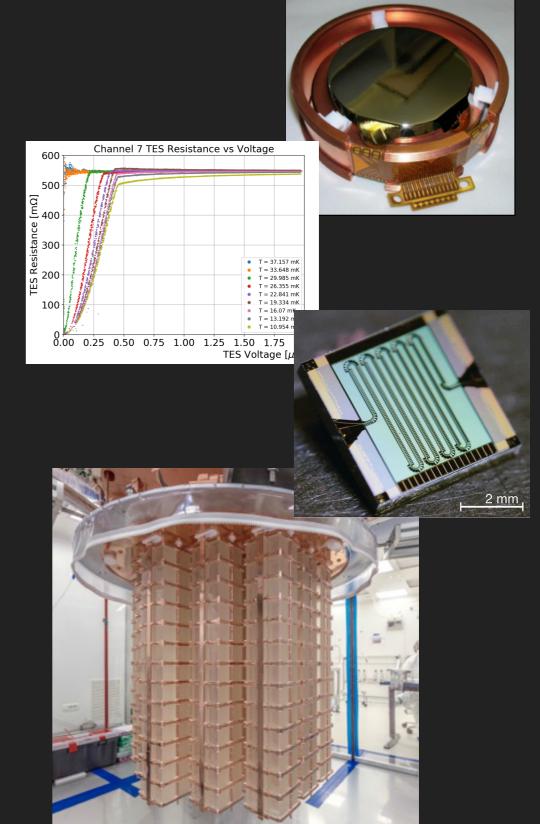


12



rf Multiplexing Readout

- Multiplexing based on rf SQUIDs
 - Similar to HOLMES design
 - Multiplexing factors up to 100~1000s
 - Carrier frequencies in the ~GHz range
- X Cannot use common TES bias line
 - Need one bias line per TES
- Signals need to travel the ~meter distance between the TES and SQUID un-mixed
 - Low background wiring only needs to have ~100 kHz bandwidth
- X Magnetic flux & microphonics noise?
- TWPA final amplification stage
 - Can achiever higher gain with SQL limited noise floor
- Being developed at MIT as a collaboration between CUPID+Ricochet groups
 - Working with Lincoln Labs to design cold electronics
 - Testing NIST & SLAC designed warm readout electronics
- No results yet, electronics are still being built



Appl. Phys. Lett 111 (24) 2017

Conclusions

- Macrocalorimeters are a very versatile detector technology with a wide array of HEP and nuclear physics applications
- 2. Next generation detectors need to balance
 - Very low noise readouts
 - Low background materials
 - Scalability to large numbers of channels and physically large detectors
- 3. Potential application of QIS low-noise superconducting sensors to multiplex macrobolometer detectors
 - But technological challenges still exist

14

Thank you for your attention!

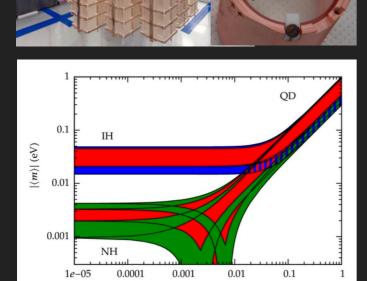
Applications for Quantum Computing?

- DOES NP/QIS Grant to answer the question: Does natural radioactivity decrease the coherence time of qubits?
- Solution: low radioactivity quantum computers & sensors
 - Well developed shielding techniques from DM and $0v\beta\beta$ experiments
 - Low radioactivity materials and manufacturing known and well developed
- Need low radioactivity manufacturing techniques for superconducting circuits
 - Probably this is wiring and readouts materials rather than the qubit fabrication itself

PI Martin Savage	Title Nuclear Physics Pre-Pilot Program in Quantum Computing	Description to support pre-pilot resear Quantum Computing (QC)
		expertise into the nuclear address scientific applicati research. This pre-pilot pro community at the nationa Challenge problems in nuc
Joseph Formaggio	Investigating Natural Radioactivity in Superconducting Qubits	to measure the impact of coherence times. MIT will radiation transport models to be deployed in various coordinate this effort with Labs). PNNL will be respor their calibrated measurem
lan Claet	Quantum Simulatars for Nuclear Physics: Theory	duantum Simulations for I Quantum Simulations for I begin to develop the expe QCD simulations on Quant Simulators.
Valentine Novosad	Superconducting Quantum Detectors for Nuclear Physics and QIS	to work on the proposal for Nuclear Physics and QI
Stephan Frederich	Thorium 229mTh	to study of the feasibility of transition of 229mTh by in such as MgF2
	Formaggio lan Claet Valentine Novosad Stephan	Formaggioin Superconducting QubitsIan CleetQuantum Simulators for NuclearPhysics: TheoryPhysics: TheoryValentineSuperconducting Quantum Detectors for Nuclear Physics and QISStephanThorium 229mTh

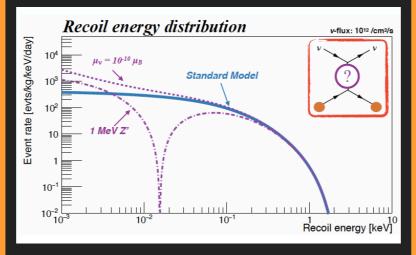
ENERGY

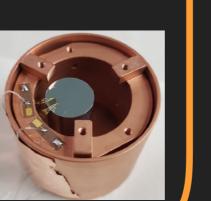
Early FY 2018 NP QIS/QC Awards



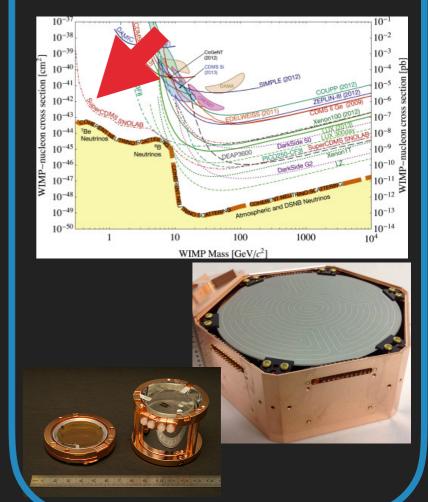
Broad Range of Physics Applications

Nuclear Physics


HEP



 m_{\min} (eV)


CEvNS

WIMPs

Coordinating Panel for Advanced Detectors, Madison, Wisconsin

December 8, 2019