The Physics Potential of Advanced Short-Baseline Reactor Neutrino Detectors

December 12, 2019

Bryce Littlejohn Illinois Institute of Technology

Reactor Neutrino Achievements

- Proved neutrinos' existence (1950s)
- Probed CC/NC cross-sections back when that was new and cool (50s-70s)
- More recently: proving neutrinos have mass, and measuring SM neutrino oscillation parameters
 - Leading or competitive precision for 3 of 6 SM oscillation parameters: θ_{13} , Δm^2_{21} , $|\Delta m^2_{31}|$

Savannah River Neutrino Detector schematic

2016 Breakthrough Prize

Daya Bay Far Site

Reactor Neutrinos Today at Short Baselines

Attacking Current Science Drivers

- Physics associated with neutrino mass: sterile neutrinos
- Precision fluxes for pursing science drivers at reactors
- BRN-Relevant Tech Development
 - Advanced scintillator technology
 - Precision background characterization
- Applications
 - Improving nuclear data
 - Developing reactor monitoring capabilities

Goal: overview promise of reactor neutrinos in these three areas.

Science Drivers: Sterile Neutrinos

• If there are $\sim eV$ range mass states are out there:

- Primary science driver: probe this physics!!!
 - $U_{\mu4}$: probed with accelerator/atmospheric V_{μ}
 - U_{τ^4} : probed with atmospheric/solar MSW, and accelerator NC v_x interactions
 - $U_{\mu4}$ and U_{e4} combo: probed with accelerator v_{μ} -to- v_e
- Reactors currently provide, and will continue to provide, the most direct and stringent limits on U_{e4}.
 - Pure U_{e4} probe is <u>even more important</u> if neutrino-related BSM physics is more complex than above: neutrino decay, hidden neutrino portal, 3+N, NSI, ...

Sterile Neutrino Measurement Styles

- Measure IBD deficit from V_e disappearance (i.e. flux anomaly)?
- Better choice: Directly probe L/E behavior by comparing energy spectra between different short baseline ranges

Recent Sterile Oscillation Results

US-Based Avenues For Improvement

- Also joint STEREO-PROSPECT analysis
- To improve in < eV range:
 - PROSPECT deployments at LEU and HEU with same detector
 - Joint PROSPECT-Daya Bay analysis (NEOS-style near-far ratio comparison)

Science Drivers: Reactor Production

• What v_e fluxes and spectra are made by each fission isotope?

- Q:What does this have to do with neutrino science drivers?
- A: Better flux knowledge = better neutrino/BSM physics
 - Example: reactor-based coherent neutrino scattering
 - Example: reactor mass hierarchy measurements at reactors
- Note: Also very valuable in nuclear data / applications contexts

Reactor Neutrino Production

- It's remarkable HOW MUCH we've learned in the past 10 years
 - In 2009, 'state-of-the-art' was a Vogel parameterization from the 1980s.
- Now:
 - Flux: for ²³⁵U and ²³⁹Pu, direct measurements rival claimed model precision

Tough Flux Questions Remain

- We are still far from a complete accurate picture, however.
 - Have no theoretical model that accurately predicts fluxes and spectra
 - Still don't know exactly WHAT exactly is incorrectly predicted
 - Only 235? 239 and 238 too? Same Q for flux AND spectrum

US-Based Avenues For Improvement

- More statistics needed at varied reactor types
 - Particularly reactors that are ²³⁵U-burning, and Pu-burning (Future VTR at INL)
 - Ideally make systematics-correlated using a single mobile detector
- Also need joint analyses between diverse datasets

Reactor Neutrinos Today: BRN Tech

- Covered in other talks, but briefly:
 - Organic liquid scintillator R&D
 - PROSPECT has made and characterized new optically clear, PSD-capable, lithium-doped liquid scintillator
 - H. P. Mumm, CPAD 2019 Talk on Sunday

- Precision background characterizations
 - PROSPECT technology enables unique precision measurements of neutrons from many sources
 - X. Zhang, CPAD 2019 Talk on Tuesday

Reactor Neutrinos Today: Applications

Events in 5 ton vea

10³ to 10⁴ 10^2 to 10^3

10 to 10² 1 to 10

250m

X mark neutrino detector locations

- Reactor monitoring for applications and non-proliferation
 - Ex-situ stable daily thermal power measurements for advanced reactor designs
 - Monitoring fuel plutonium content using measured IBD energy spectrum

Reactor Neutrino Monitoring Advances

• Last few decades have brought major advances in realized tech:

1950s: First Detection; ~1000 counts in 1 month; 5 background counts per 1 antineutrino count (S:B 1:5)

<u>1980s</u>: Bugey: ~1000 counts per day, S:B 10:1, but only underground. flammable/corrosive solvent detector liquids

2000s: SONGS: ~230 counts per day, 25:1 S:B, but must be underground. 'semi-safe' detector liquid

NOW: PROSPECT detector: ~750/day from only 80MW reactor, S:B 1:1 on surface, 'safe' plug-n-play detector 14

Reactor Neutrino Monitoring Advances

• Last few decades have brought major advances in realized tech:

Different BRN process also currently being performed to understand/define the benefits of antineutrinobased reactor monitoring technology

1980s: Bugey: ~1000 counts per day, S:B 10:1, but only underground. flammable/corrosive solvent detector liquids

NOW: PROSPECT detector: ~750/day from only 80MW reactor, S:B 1:1 on surface, 'safe' plug-n-play detector 15

Reactor Neutrinos Today: Applications

Reactor neutrino measurements have been a major motivator in efforts to improve nuclear data and databases

Conclusion

- Advanced short-baseline reactor antineutrino detectors can play a three-pronged role in US science advancement
 - Improve world-leading limits on the sterile oscillation parameter U_{e4} , and untangle reactor antineutrino flux and spectrum anomalies with complimentary data from multiple reactor types.
 - Develop organic scintillator technology and detection techniques broadly valuable for measuring neutrinos and other relevant backgrounds
 - Bridge fundamental and applied physics: use neutrino data to improve nuclear data, and to demonstrate new reactor monitoring technologies
- These efforts can build on recent accomplishments by the PROSPECT experiment
 - First-ever on-surface demonstration of high-signal, low-background reactor antineutrino detection
 - First PRL publications on sterile neutrino and ²³⁵U antineutrino energy spectrum results

Backup Slides

Fine Structure: A Problem For JUNO?

- Another ill-defined aspect of spectrum: fine structure
 - Arises from endpoints of individual beta branches in aggregate spectrum
 - Do fine structure wiggles obscure wiggle frequency from oscillations, and thus mass hierarchy measurements at reactors?

Fine Structure: A Problem For JUNO?

- Nuclear theorists: fine structure features are too small to affect the mass hierarchy measurement.
 - Demonstrated using a Fourier decomposition approach
- Some discussion appears to continue in community?
 - 'Fourier decomposition not used by JUNO...'
 - 'One specific energy range matters for hierarchy; what's fine structure like there?'

- Some discussion of dedicated fine structure measurements
 - Need a high-resolution detector (better than JUNO)
 - Need a high-statistics measurement (ideally much more than JUNO)
 - DYB and PROSPECT could provide some info on fine structure; optimized, dedicated detector would more precisely nail down fine structure

IBD-CEvNS Complementarity

- CEvNS is predicted by standard model with high precision
 - Precision <u>absolute</u> measurements of CEvNS = ability to probe BSM physics!
- Ultimate limitation for CEvNS BSM-testing with reactors: the antineutrino flux
 - As we know, we cannot trust reactor flux and spectrum predictions
 - Solution: relative measurements WRT IBD measurements
 - SM likely also predicts CEvNS-IBD ratio with high precision
- So for sake of CEvNS, let's squeeze every last improvement out of absolute IBD yield and spectrum measurements!!

PROSPECT Experiment Overview

Scientific Goals

- I. model independent search for eV-scale sterile neutrinos at short baselines
- 2. measure ²³⁵U-only antineutrino spectrum to address spectral deviations

Close proximity to reactor (< 10m)

- search for sterile oscillations throughout the detector (segmented)
- high statistics for precision spectrum
- possible at research reactors, allows us to isolate a single isotope ²³⁵U

Challenges at HFIR near-surface site

- backgrounds: cosmogenic fast neutrons and reactor gammas
- limited space: compact calorimeter
- current detector technology not wellmatched for this environment

Active-Sterile Osc Formalism

Active-Sterile Osc and LBL CP-Violation

• To avoid obscuring LBL Dutta, Gandhi, Kayser, Masud, and Prakash, JHEP 2016:122 B. Kayser, 2016 PITT PACC SBN Workshop Would be best to have O(5%) constraints on $sin^22\theta_{x4}$

High Flux Isotone Reactor (HFIR)

Pulse-Shape Discriminating ⁶LiLS

- PSD adds powerful information to identify IBD and reject backgrounds
- A multi-year R&D effort to optimize PSD, geometry, optics, etc.

PROSPECT, NIM A806 401 (2019)

Combatting Backgrounds On-Surface

- Near-surface backgrounds: cosmogenic fast neutrons, reactor gammas
- Combination of segmentation, ⁶Li liquid scintillator, particle ID powerful
- PSD, shower veto, topology, and fiducialization cuts provide >10⁴ active background suppression (signal:background > 1)

Review: Sterile Oscillation Dataset

- 33 days of Reactor On
- 28 days of Reactor Off
- From 0.8-7.2 MeV prompt:
 - ~25,000 IBD interactions
 - average of ~770 IBDs/day
 - correlated S:B = 1.32
 - accidental S:B = 2.20
 - IBD selection defined and frozen on 3 days of data
 - Segment-to-segment I/r² drop-off clearly visible

PROSPECT ²³⁵U Spectrum Result

- Background-subtracted ²³⁵U spectrum result
- How does PROSPECT compare to 'bump' in LEU θ₁₃ experiments?
 - PROSPECT relative bump size WRT to Daya Bay: 69% ± 53%
 - ~consistent with 'no bump' (0%) and 'DYB-sized bump' (100%)
 - 'Big bump' (178%) if ²³⁵U is the sole bump contributor
 - Disfavored at 2.1σ

Neutrino-4

Feldman-Cousins Approach

 \Box Standard (incorrect) method does not handle boundary features such as bounded nature of $sin^2 2\theta$

(0,1) or cases when oscillation frequency approaches energy bin size. Feldman-Cousins method solves

those problems

□ Comparing p-values for Feldman-Cousins and standard (incorrect) methods:

Neutrino-4

Feldman-Cousins Approach

 \Box Standard (incorrect) method does not handle boundary features such as bounded nature of $sin^2 2\theta$

(0,1) or cases when oscillation frequency approaches energy bin size. Feldman-Cousins method solves

