Report from BRN Neutrino Working Group **CPAD Instrumentation Frontier Workshop** Dec. 8th, 2019

> Amy Connolly (OSU) Kate Scholberg (Duke) **Ornella Palamara (FNAL)** Daniel Dwyer (LBL)

BRN process

Feedback solicited from this list of experiments:

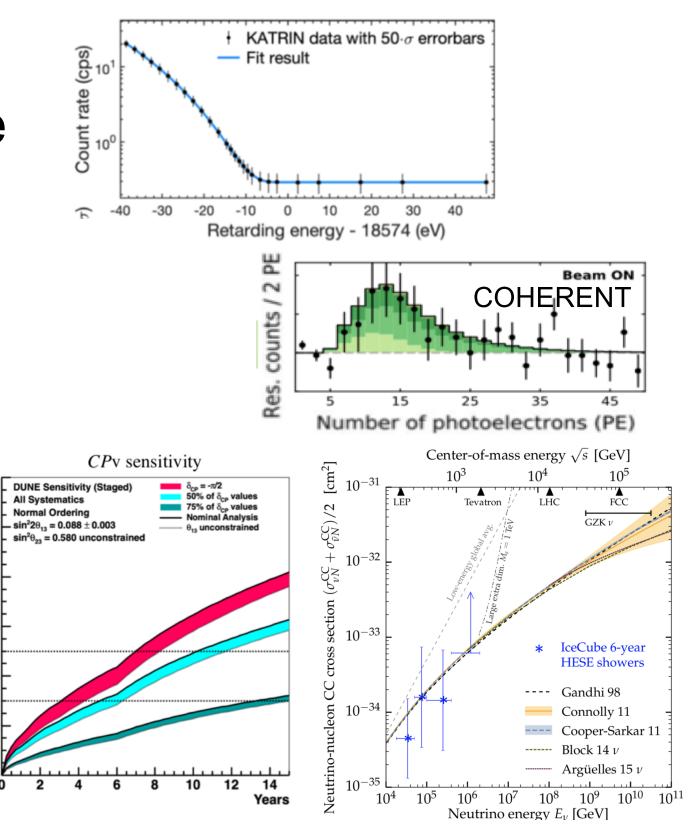
Instrumentation BRN: Midterm Report – Bonnie Fleming, Ian Shipsey

Here I will summarize the *Neutrino* section of the report as it stands and solicit feedback

Similar talk to be given Wed. in DC with feedback incorporated

Coll DUN Day JUN MIN Micr PRC T2K Sup CEF NΟ ICA SBN ANN COF ICE ANI ARA ARI ANT GR/ KM3 MA. EXC CUC NEX Kam Old

laboration
NE
/a Bay
10
IERVA
roBooNE
OSPECT
<
er-K
RN Neutrino and Neutrino Pla
vA
RUS
ND
NIE
HERENT
CUBE
ТА
4
ANNA
TARES
AND
3NET
JORANA/LEGEND
)
ORE
ХT
nLAND-Zen
Snowmass mailing list


Science Drivers: Big Picture What is the origin of neutrino mass? What is the neutrino mass hierarchy? What are the neutrino masses?

Do neutrinos and antineutrinos oscillate differently?

Are there additional neutrino types or interactions?

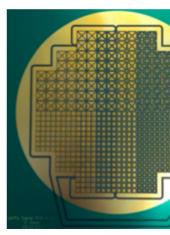
Are neutrinos their own antiparticles (Majorana or Dirac)?

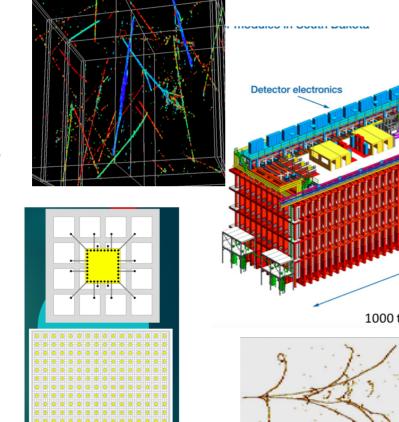
 $\sigma = \sqrt{\Delta \chi^2}$

Classes of experiments targeted at science drivers

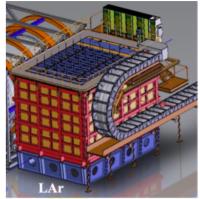
- Oscillation experiments: Solar, atmospheric, reactor, accelerator neutrinos
 - Hierarchy, CP-violating phase(s), precision measurements
 - Beyond the SM physics (BSM) searches
- Astrophysical neutrinos: supernova, GRBs, AGNs, mergers (possible BSM)
- Neutrino cross sections, CE_vNS (needed for interpretation of results, BSM)
- Neutrinoless double-beta decay (Dirac or Majorana)
- Kinematics of weak decays (Neutrino absolute mass scale also with precision cosmology)

Rough Timeline of Neutrino Experiments

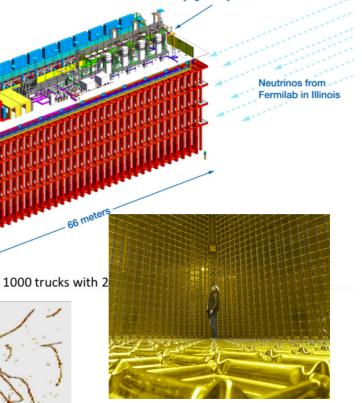

	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2040
NOvA												
T2K												
SK-Gd							>					
SBND												
Icarus								atic				
ProtoDUNE post-LS2								orma				
DUNE module 1+2							ini	01.			>	
DUNE module 3							ind "				>	
DUNE MOO						she					>	
DUNE 2.4 MW beam						, dar.						>
Hyper-K					cti	19				>		
JUNO												
WATCHMAN				:00								
PROSPECT upgrade				innii								
CEvNS multi-target				6/11			>					
CEvNS reactor			YMAN				>					
CEvNS multiton									>			
IceCube Gen-2								>				
KATRIN												
Project 8												


Summary of Neutrino Report

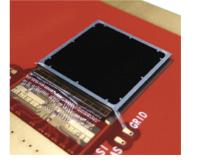
Enhancement of LArTPCs Liquid Argon Time Projection Chambers


"Incremental" improvements

- HV delivery & stable operation
- Cold electronics
- Photons (see next PRD)
- Event reconstruction techniques
- Possibly transformative
 - Novel charge readouts--pixelized readouts
 - Underground argon
 - Magnetized detectors



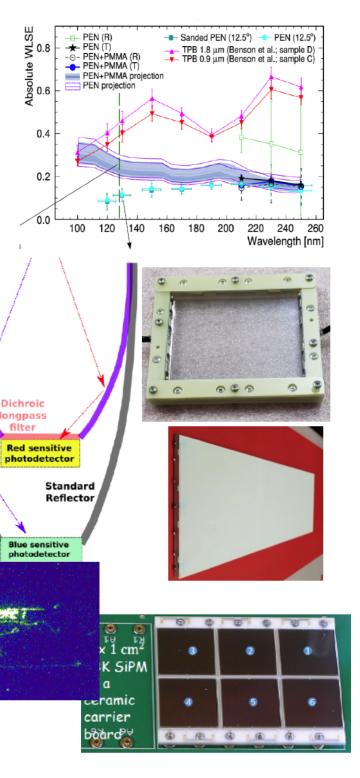
Cryogenic systems


Enhanced Photodetection

Improvements in photon detection enabling v physics

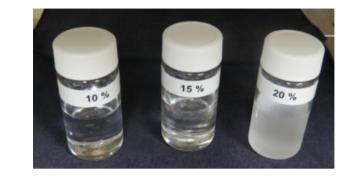
- Improved calorimetry and tracking
- Enhanced signal-to-background discrimination
- Reduced thresholds

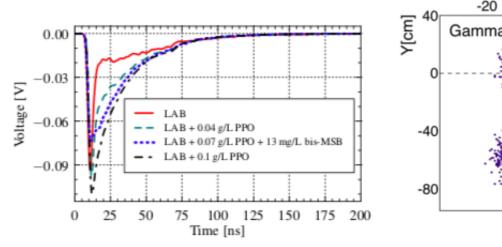
Active field of development:


- New reflectors and wavelength shifters

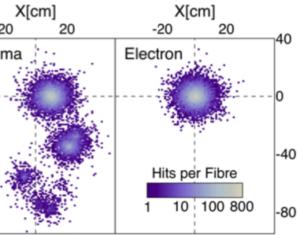
Xe: 50 ppm

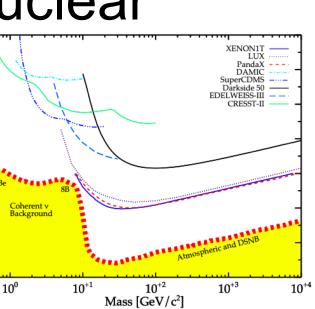
- Cherenkov vs. scintillation discrimination
- Scalable (i.e. large-area) photodetection systems
- Ultrafast timing: Large Area Picosecond Photon Detectors (LAPPDs)




New Scintillators

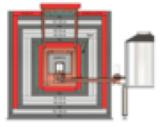
Developments in scintillator technology (connected to photosensor/wavelength-shifter technology)


- Large-scale hybrid water Cherenkov/scintillators
 Improved particle ID and reconstruction for neutrino physics
- R&D directions
 - Water-based scintillators
 - Slow scintillators
 - Opaque scintillators
 - Alternative fluors

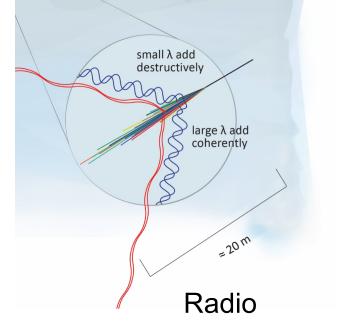


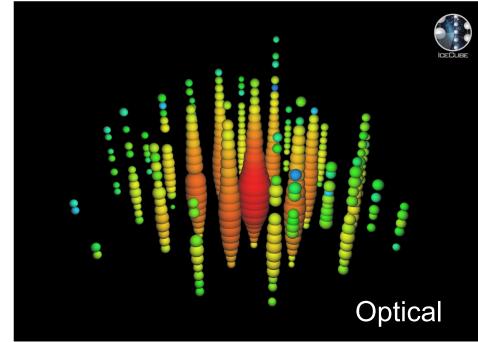
Large, Low-Threshold, Low-Background Nuclear Recoil Detectors

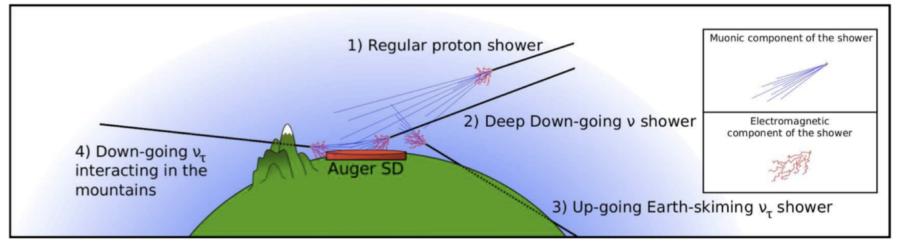
scattered neutrino


- Relevant for both dark matter and v physics (CEvNS)
- Desirables: large mass (ton+ scale), low threshold, low background, energy resolution, directionality
- Technologies:
 - Noble liquid, single and dual phase
 - Cryogenic bolometers
 - Inorganic scintillators
 - CCDs
 - Gas TPCs
 - …
- Challenges: radiopurity, noise, energy deposition sensing, electronics, signal processing, detector response

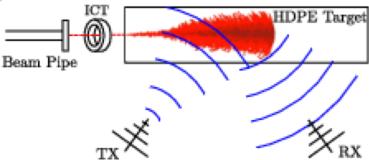
10-42


 10^{-4}

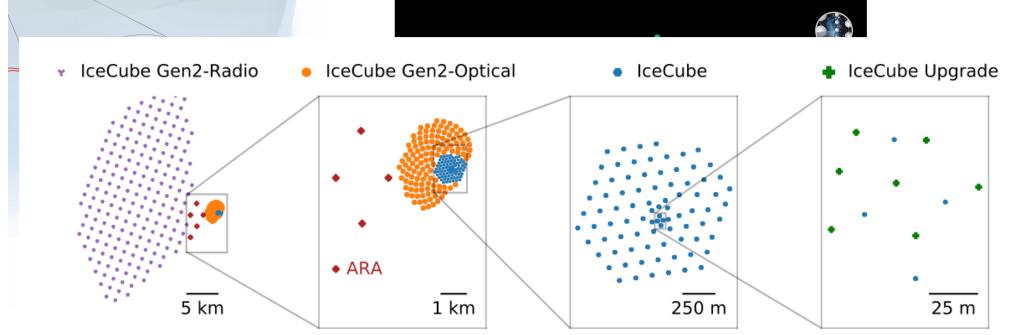


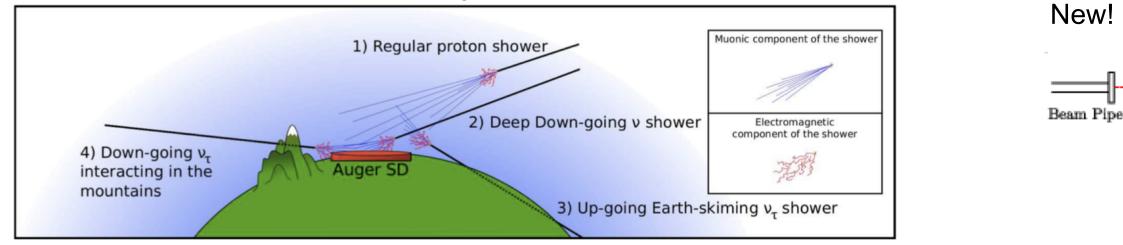


Astrophysical Neutrino Detection through lower thresholds, larger volumes



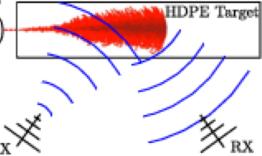
Tau neutrinos via air showers: Auger, GRAND, BEACON


New! radar technique RET



ANITA \rightarrow PUEO

Astrophysical Neutrino Detection through lower thresholds, larger volumes


Need fast (>GHz) digitization at low power (~1 W/antenna), power, communication over 100s km² array Tau neutrinos via air showers: Auger, GRAND, BEACON

ANITA \rightarrow PUEO ver 100s km² array

New! radar technique RET

Next steps

Looking for more input

Many of us will meet again in DC Dec. 11th-14th