THE NEXT EXPERIMENT

Ben Jones

University of Texas at Arlington

The NEXT Program

 Sequence of HPGXe TPCs, focused on achieving big, very low background xenon 0vββ detector

 → NEXT-DBDM (Berkeley, US)
→ NEXT-DEMO (Valencia, Spain)
→ NEXT-White (Canfranc, Spain)
→ NEXT-100 (Canfranc, Spain)
→ NEXT-HD

 \rightarrow NEXT-BOLD

NEXT-White operating now Full underground technology demonstrator @10kg scale

Demonstrating HPGXe

• 1) Energy resolution

2) Topology

3) Low background

Demonstrating HPGXe

1) Energy resolution

Fluctuation-less EL gain and low Fano factor produces resolution comparable with solid-state technologies in a monolithic TPC experiment

2) Topology

3) Low background

Bolotnikov and Ramsey. "<u>The</u> <u>spectroscopic properties of</u> <u>high-pressure xenon</u>."NIM *A* 396.3 (1997): 360-370

6

Initial results on energy resolution of the NEXT-White detector

JINST 13 (2018) no.10, P10020

Energy calibration of the NEXT-White detector with 1% FWHM resolution near Qββ of 136Xe JHEP 1910 (2019) 230

Demonstrating HPGXe

1) Energy resolution

Fluctuation-less EL gain produces resolution comparable with solid-state technologies in a monolithic TPC experiment

2) Topology

Lower density allows powerful single-vs-multi electron and single-vs-multi-site topological background rejection

3) Low background

Data / MC agreement on topological signature

Efficiency of the 2electron topological signature in the NEXT-White detector

Demonstration of the event identification capabilities of the NEXT-White detector JHEP 1910 (2019) 052

Two-neutrino double beta decay candidates

NEXT-White data

Topologically identified and energy-separated from double escape peaks

Demonstrating HPGXe

1) Energy resolution

Fluctuation-less EL gain produces resolution comparable with solid-state technologies in a monolithic TPC experiment

2) Topology

Lower density allows powerful single-vs-multi electron and single-vs-multi-site topological background rejection

3) Low background

Characterized backgrounds at small scales can extrapolate straightforwardly to large scales **NEXT-HD:** 2023

NEXT-NEW

66 cm

Running

Background Model Validation

- $0.75 \pm 0.12_{stat} \pm 0.25_{syst}$ predicted in wide ROI
- 1 event observed
- NEXT background model validated.

Radiogenic backgrounds in the NEXT double beta decay experiment JHEP 10 (2019) 51

Background Model Validation

- $0.75 \pm 0.12_{stat} \pm 0.25_{syst}$ predicted in wide ROI
- 1 event observed
- NEXT background model validated.

(and, under more modern analysis, one passing event is clearly rejected as a multi-site charge deposit)

Radiogenic backgrounds in the NEXT double beta decay experiment JHEP 10 (2019) 51

The NEXT Program

 Sequence of HPGXe TPCs, focused on achieving big, very low background xenon 0vββ detector

→ NEXT-DBDM (Berkeley, US) → NEXT-DEMO (Valencia, Spain) \rightarrow NEXT-White (Canfranc, Spain) → NEXT-100 (Canfranc, Spain) → NEXT-HD $\rightarrow NEXT-BOLD$

100 kg scale neutrinoless double beta decay search and background-study for ton-scale

NEXT-100 Sensitivity

- Projected near-background-free performance at 100kg scale Total BG: 5x10-4 c/keV/kg/y, validated with NEXT-White.
- Presently under construction for operation in 2020.

The NEXT Program

 Sequence of HPGXe TPCs, focused on achieving big, very low background xenon 0vββ detector

 → NEXT-DBDM (Berkeley, US)
→ NEXT-DEMO (Valencia, Spain)
→ NEXT-White (Canfranc, Spain)
→ NEXT-100 (Canfranc, Spain)
→ NEXT-HD

 $\rightarrow NEXT-BOLD$

Ton-scale experiment in conceptual design stage I present projections and selected ongoing R&D

← NEXT-HD event selection assuming 0.7% energy resolution and demonstrated topological cut performance

NEXT-HD Background Model:

Cleaner Teflon and Kapton located by other collaborations:

- 0.25 ct / [ton yr ROI];

• NEXT-100 background model includes all assayed NEXT-100 materials.

- NEXT-100 background model includes all assayed NEXT-100 materials.
- **NEXT-HD background model** takes advantage of cleaner materials (Teflon and Kapton) already identified by other collaborations.

Optical R&D

 New Teflon reflectivity measurements at 175nm and 420 nm to inform NEXT Teflon selection and thickness.

Reflectance relative to 1 cm at 450 nm			
Thickness	Вох	Disk	
1 cm	100%	100%	
8 mm	98.9 ⁺¹ -0.3 [%]	98.8 ± 0.03%	
6 mm	97.9 ⁺² _ _{-0.9} %	97.9 ± 0.09%	
5 mm	96.9 ^{+0.4} -1.1%	96.0 ± 0.1%	

Reflectance relative to 1 cm at 260 nm			
Thickness	Вох	Disk	
1 cm	100%	100%	
8 mm	101.1 ^{+0.12} 1.02 %	96.7 ± 0.1%	
6 mm	101.1 ^{+0.2} -0.31%	97.5 ± 0.2%	
5 mm	100.0 ^{+0.55} 0.44%	95.9 ± 0.2%	

Simultaneous fit to all boxes, Blue SiPMs with Blue C LED

→ Teflon mass (a dominant background source) reduced by x2, strong reflectivity obtainable at 5mm.

Paper in preparation

Gas Cooling

Motivations:

- Replace PMTs (source of radioactive background) with radiopure SiPMs, without suffering from dark rate.
- Enable higher Xe mass at a given pressure
- Minimize outgassing for better e⁻ lifetime

Key Question:

will energy resolution degrade at low temperature?

First Results:

- Electroluminescence from 59.5 keV γ (1.2-2 bar)
- Vary T from 300K to 175K
- No observable degradation of energy resolution down to 175K
- 3.8% FWHM at 60 keV, extrapolates to 0.6% FWHM at Q_{ββ}

Diffusion in NEXT

In pure xenon diffusion of drifting electrons is very large. After 1 m of drift the electron cloud has a transverse rms of ~10mm and longitudinal rms of ~5mm

Spatial resolution is dominated by diffusion in NEXT (detector configuration of tracking plane and EL are sub-dominant)

(Slide c/o Neus Lopez March, LIDINE)

NEXT with helium key results

NEXT with helium key results

Helium impact on longitudinal diffusion quantified – diffusion larger than swarm simulations but workable

JINST 14 (2019) no.08, P08009

 Theoretical work on swarm microphysics ongoing to understand and fix 20% discrepancies in models.

Refactored MagBoltz codebase into Python to enable these ongoing studies: arXiv:1910.06983 sub to Comp. Phys Comm.

NEXT helium next steps

- Same sensors as NEXT-White and NEXT100 detectors
- Measure DT and actual effect on event topology from He additive
- Pmts kept at vacuum
- Next step in NEXT low diffusion program at IFIC, Spain

(Slide c/o Neus Lopez March, LIDINE)

Adding low-diffusion mixture predicted to improve quality of topological cuts

Adding low-diffusion mixture predicted to improve quality of topological cuts

The NEXT Program

 Sequence of HPGXe TPCs, focused on achieving big, very low background xenon 0vββ detector

→ NEXT-DBDM (Berkeley, US) → NEXT-DEMO (Valencia, Spain) \rightarrow NEXT-White (Canfranc, Spain) → NEXT-100 (Canfranc, Spain) → NEXT-HD "traditional" approach \rightarrow NEXT-BOLD w/barium tagging

First ever single molecule images in high pressure gas single Barium ions in 10 bar argon and xenon

Ba⁺⁺ ion / 10 bar xenon

Ba⁺⁺ ion / 10 bar argon

 NEXT-BOLD would represent a dramatic sensitivity improvement through combination of signal efficiency increase and background reductions

 NEXT-BOLD would represent a dramatic sensitivity improvement through combination of signal efficiency increase and background reductions

 NEXT-BOLD would represent a dramatic sensitivity improvement through combination of signal efficiency increase and background reductions

Conclusions

- NEXT is a phased program of high pressure xenon TPCs targeting an ultra-low background, ton-scale neutrinoless double beta decay experiment
- Results from NEXT-White validate technological performance
- NEXT-100 will demonstrate physics capability at 100kg scale with low background in xenon
- NEXT-HD extends demonstrated approaches to ton-scale, ongoing R&D continues to provide iterative (but substantial) performance improvements.
- Development of barium tagging technology for NEXT-BOLD may enable ultra-sensitive next-generation approach.