

## DEVELOPMENT OF LARGE SCALE CMB DETECTOR ARRAYS AT ARGONNE



Photo: Joshua Montgomery

**TOM CECIL** High Energy Physics Division Argonne National Laboratory

December 8, 2019 CPAD, Madison, WI

## COLLABORATORS

#### ARGONNE

- Pete Barry
- Amy Bender
- Faustin Carter (HRL)
- Clarence Chang
- Junjia Ding (Verily)
- Jason Henning
- Trupti Khaire (IMT)
- Steve Kuhlman
- Val Novosad
- Chrystian Posada (Intel)
- Gensheng Wang
- Volodomyr Yefremenko

#### SPT COLLABORATION

- Argonne
- Case Western Reserve University
- Fermi National Acceleratory Lab
- Harvard-Smithsonian Astrophysical Observatory
- McGill University
- LBNL / University of California, Berkeley
- University of California, Davis
- University of Chicago
- University of Colorado at Boulder
- University of Illinois Urbana-Champaign
- University of Toronto



## OUTLINE

- Motivation
- CMB Detector Arrays
- Detector Array Fabrication
- Future Developments Moving towards CMB-S4



## **COSMIC MICROWAVE BACKGROUND**

#### **CMB** Science



- Temperature variations tell us about distribution of matter in the universe
- E-mode (curl free) polarization from density perturbations
- B-mode (divergence free) polarization from lensed E-modes and gravitational waves
- Science products
  - scalar-to-tensor ratio, r
  - effective number of relativistic species,  $\Delta \text{Neff}$
  - sum of neutrino masses,  $\Sigma m_v$



## **COSMIC MICROWAVE BACKGROUND**

**CMB** Experimental Scaling

- Detectors in ground-based experiments are already mostly backgroundlimited (largest noise source is photon noise from the sky)
- Measurements of B-modes requires increasingly sensitive experiments
- More sensitivity = More detectors



## **COSMIC MICROWAVE BACKGROUND**

#### CMB-S4

- Single experiment bringing together the CMB community
  - Two sites: South Pole and Atacama
  - Both small (0.5 m) and large (6 m) aperture telescopes
- ~ 510K detectors in 9 frequency bands
  - TES detectors
  - Feedhorn coupling
  - Dual-polarization, dichroic pixels
- Community fabrication effort with detectors made at several sites (ANL, LBNL/SeeQc, SLAC, others....)

#### **SAT receivers**

18 SATs with a total of 153,232 detectors

|                                       | LF      | CF <sub>low</sub> | $CF_{high}$   | HF            |
|---------------------------------------|---------|-------------------|---------------|---------------|
| Center frequency (GHz)                | 30/40   | 85/145            | 95/155        | 220/270       |
| Primary lens diam. (cm)               | 55      | 55                | 55            | 44            |
| FWHM (arcmin)                         | 72.8    | 25.5              | 22.7          | 13            |
| Fractional bandwidth                  | 0.3     | 0.24              | 0.24          | 0.22          |
| NET ( $\mu K \sqrt{s}$ ) per detector | 177/224 | 270/238           | 309/331       | 747/1281      |
| N <sub>det</sub> per optics tube      | 288     | 3524              | 3524          | 8438          |
| Number of optics tubes                | 2       | 6                 | 6             | 4             |
| Number of detectors                   | 576/576 | 21,144/21,144     | 21,144/21,144 | 33,752/33,752 |

#### LAT receivers

3 LATS with a total of 357,952 detectors

|                                         | ULF     | LF            | MF            | HF            |
|-----------------------------------------|---------|---------------|---------------|---------------|
| Center frequency (GHz)                  | 20      | 27/39         | 93/145        | 225/278       |
| FWHM (arcmin)                           | 10.0    | 7.4/5.1       | 2.2/1.4       | 1.0/0.9       |
| Fractional bandwidth                    | 0.25    | 0.22/0.46     | 0.38/0.28     | 0.27/0.16     |
| NET ( $\mu K \sqrt{s}$ ) per detector   | 438     | 383/250       | 302/356       | 737/1840      |
| N <sub>det</sub> per optics tube        | 160     | 320/320       | 3460/3460     | 3744/3744     |
| $N_{\text{tubes}}$ wide survey (2 LATs) | 0       | 2             | 12            | 5             |
| N <sub>tubes</sub> delensing (1 LAT)    | 1       | 2             | 12            | 4             |
| Number of detectors                     | 576/576 | 21,144/21,144 | 21,144/21,144 | 33,752/33,752 |

CMB-S4 Science Case, Reference Design, and Project Plan; arXiv:1907.04473



## **CMB DETECTOR ARRAYS**

Transition Edge Sensors (TES)

- Most commonly used detector in current CMB experiments
- Superconducting Thermistor
- Voltage bias in the middle of superconducting – normal transition
  - Negative ETF stabilizes bias points and speeds up detector response
  - Can be DC or AC biased
- SQUID amplifier based readout
  - Time Domain Mux (TDM)
  - Frequency Domain Mux (FDM)
- Noise levels sub-dominate to other noise sources (e.g. readout and sky)



0.9



### **CMB DETECTOR ARRAYS**

SPT stages



Detector Design

- Science drivers
  - Frequency Bands
  - Saturation Powers
  - Noise levels
- Practical Drivers
  - Cryostat base temperature
  - Telescope optics
  - Readout system
- Need control over detector parameters
  - T<sub>C</sub>
  - Rn
  - G
- Depending on design, parameters are degenerate

Constraints on  $T_{\rm c}$  and  $R_{\rm N}$ 



F.W. Carter, et. al. in J. Low Temp. Phys. 1 (2018).



#### **Pixel Layout**

- 6 TES per pixel
  - Dual polarization
  - Tri-chroic (95, 150, and 220 GHz)
- Key components
  - Broadband sinuous antenna
  - In pixel channelizing
  - Microwave crossovers
- 271 pixels on a 6" wafer (1626 TES per wafer)
- 17 Step Fabrication process
- Batch of 5 wafers takes ~ 1 month to produce



C.M. Posada, et.al. in Supercond. Sci. Technol. 28, 1 (2015).



#### $T_C$ Engineering

- Ti/Au/Ti/Au Quadlayer
  - Base Ti helps adhesion
  - Both Au layers help to suppress T<sub>C</sub>
  - Top Au layer limits oxidation of the Ti
- Control T<sub>C</sub> using layer thickness
- Control  $R_n$  using TES width
- Material properties can very with each new sputtering target



<sup>11</sup> F.W. Carter, et. al. in J. Low Temp. Phys. 1 (2018).

'G' Engineering

- G is a function of leg geometry and material parameters
- G is determined from measurements of detector saturation power vs temperature
  - $P_{sat} = G^{*}(T^{n}-T^{n}_{bath}) / nT^{n-1}$
- Measurements confirm that:
  - Conductance scales as leg width / length for constant thickness
  - Microstrip dielectric has major impact on G





J. Ding, et.al. in IEEE Trans. Appl. Supercond. 27, 1 (2017).



SPT-3G Array Performance

#### Detectors are as good as one can get!

- Detector noise dominated by fluctuations of absorbed photons **oolometers** 
  - measured on sky
  - NO GAIN from lower noise detectors
- Array mapping speed
  - 9 / 7.5 / 30  $\mu$ K  $\sqrt{s}$  in 90 / 150 / 220 GHz





Number of pairs of difference map added



220GHz T map - Noise in the running coadded maps (excluded maps: {el 0: 1, el 1: 0, el 2: 2, el 3: 0})



Number of pairs of difference map added



Number of pairs of difference map added

#### MOVING TOWARDS CMB-S4 Fabrication Facilities



17,500 sq. ft. - Class 100-1000 - Bay-and-chase design

## **MOVING TOWARDS CMB-S4**

#### AIMn TES: Doping with magnetic materials

- Control Tc by doping Al with Mn.
- Fine tune Tc with post deposition bake



Demonstrated control of TES Tc in range 130-450mK

D. Li *et al., J. Low Temp. Phys.*, vol. 184, no. 1–2, pp. 66–73, Jul. 2016.
A. J. Anderson *et al., J. Low Temp. Phys.*, Nov. 2019.

AIMn TES deployed on SPT-3G in 2018



Distribution of normal resistance (left) and Tc (right) measured in the field



 $\label{eq:constraint} \begin{array}{l} \mbox{Resistance as a function of temperature for AlMn(200 nm, 2000ppm)\Ti(15nm)\Au(15nm) films with T_C of ~ 140 mK. The TES are 10 um long by 80 um (140 um) wide for the red (black) data. \end{array}$ 



## MOVING TOWARDS CMB-S4 OMT Fabrication

- OMT likely to be used on several bands for CMB-S4
- OMT fabrication requires silicon deep reactive ion etcher (DRIE)
  - PlasmaTherm DRIE installed at CNM in July 2019



90 GHz OMT probes in SPT3G layout

SiN membranes created by DRIE



# **MOVING TOWARDS CMB-S4**

#### MKIDS

- Could significantly reduce number of optics tubes needed for higher frequency bands
- Fabrication of first released devices (220/270 GHz) now completed







## FINAL THOUGHTS

- Advances in detector arrays have enabled new CMB Science
- Making/using large detector arrays is hard
- Argonne successfully fabrication and deployed the SPT-3G focal plane
- We are developing the necessary processes for CMB-S4 compliant detectors
- Effort from the entire community will be required to deploy CMB-S4



## THANK YOU



www.anl.gov