Ideas for Real-Time Analysis for HL-LHC using the CMS DAQ System

Remigius K Mommsen Fermilab

Disclaimer

The idea of the L1 scouting originates from Emilio Meschi (CERN)

This talk is based to a large extend on material presented by Hannes Sakulin (CERN) at CHEP 2019, Adelaide, Australia

Any mistakes or misinterpretations are mine

All-new CMS for HL-LHC (2027 onwards)

Muon Systems

- new DT/CSC BE/FE electronics
- GEM/RPC coverage in $1.5 < |\eta| < 2.4$
- Muon-tagging in 2.4< η < 3.0

MIP Timing Detector
30-60 ps resolution
coverage up to |n| = 3.0

Tracker

- radiation tolerant, high granularity, low material budget
- coverage up to $|\eta| = 3.8$
- track trigger at L1

Barrel Calorimeters

- new BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator

Endcap Calorimetershigh granularity calorimeter

- radiation tolerant scinitllator
- 3D capability and timing

L1 rate: 750 kHz HLT rate: ~7.5 kHz Event size: **7.5 MB** 300 TB/s @ 40 MHz

CMS Trigger & DAQ – 2 Trigger Levels Only

 \bowtie

LV1

HLT

sec

μS

Phase 0 & 1 – 2008-24

40 MHz

100 kHz

1.5 MB event size

0.15 TB/s

2 kHz

Phase 2 – 2027-

40 MHz

Digitizers

Front end pipelines

750 kHz

Event-builder nodes

7.5 MB event size

5.5 TB/s

Storage (pt5/tier 0)

7.5 kHz

L1 Trigger for HL-LHC

Phase-2 trigger project

High resolution objects

- Tracker track reconstruction in firmware
- Vertex finding
- Kalman filter muon reconstruction
- Displaced muons
- High precision calorimetry
- Particle flow reconstruction

Topological algorithms including invariant/transverse mass cuts

Machine learning algorithms

Inter-bx algorithms (limited to +/-3 bx)

What is Real-Time Analysis?

Analyze events while the data is being taken

- Partial events with limited resolution
- Full events with sub-optimal calibrations
- Much higher rate than possible with offline analysis
- Stringent time constrains

Store summary results for certain topologies at higher rate

• E.g. low-mass di-jets, three-jet resonances, di-muons

LHCb will does most analysis in "real-time"

- 2-step HLT selection
- 2nd step is run after calibrations have been done
- Same physics quality as offline for most objects

HLT Real-time Analysis

Data Scouting at HLT used successfully in CMS since 2011

- Save HLT physics objects to disk
- Perform offline analysis on these objects rather than on offline reconstructed entities
- No raw data is saved and no further reconstruction is performed for these events
- Typically 1-5 kHz of scouting data O(100 MB/s)

Run2 dataset	Event content	Event size	Rate	L1 seeds/HLT Cuts	Comment
ScoutingPFMuon	[Muons],electrons, photons,pfMet, pfJets	13 kB	0.6kHz	Many L1 seeds, pT>3 GeV, M>10 GeV	pfCandidates of jet constit., not in 2017, reworked in 2018
ScoutingPFHT	[Muons],electrons, photons,pfMet, pfJets	13 kB	0.6kHz	Many L1 seeds, HT=410 GeV	pfCandidates of jet constit.
ScoutingCaloMuon	muons(displ-) vertices, (btag) calojets,calomet	3 kB (7kB `18)	~3kHz	Many L1 seeds, pT>3 GeV,	Added tracks around muons in 2018, only since 2017
ScoutingCaloHT	muons,(displ-) vertices, (btag) calojets,calomet	3 kB (7kB`18)	~3kHz	Many L1 seeds, HT=250 GeV	Added tracks around muons in 2018

L1 Trigger Scouting

Acquire L1 trigger data at full bunch crossing rate

- No back pressure
- Drop data if system cannot keep up with rate

Analyze certain topologies at full rate

- Real-time analysis
- Store tiny event record

Planned for HL-LHC

- Prototyping now
- Testing during run 3

Physics to Look at with L1 scouting (non-exhaustive)

Physics use case

- Rare process
- Difficult to select at Level-1 trigger despite upgraded L1 trigger (Available cuts give low efficiency at attributed rate budget)
- Analysis is possible with resolution available at Level-1
- Scouting for new signal -> then point L1 trigger to it

Several Physics channels identified where L1 scouting could potentially make a difference

Dark Photon				
- D* ⁰ →D ⁰ A,A→ee/A→µµ,A→ee,A	→jj			
 Flavor anomalies: 	A			
- W'→тv @ m(W')=300 GeV	h			
 Classic B-physics: 	C tl			
- (Β→ττ or μμ?)				
 Hidden Hadronic physics (dark sector?) 				
 Soft bombs, RPV SUSY 	It			
 Kaon anomalies 	b			
− K _s →μμ	С			
 Standard Model 				
 QCD measurement, Other hadro 	nic			

A list of models we nave created by consulting with heorists

?)

ts not exhaustive out covers several classes of topics

objects?

Phil Harris(MIT) + Many others (Nhan Tran, Jeff Berryhill, David Sperka, Amit _ath,Marc Osherson, Abhijith Gandrakota,Dylan Rankin, Javier Duarte, Nick Smith, Matt Low, Paddy Fox, Nikita Blinov, Marat Freytsis, Jure Zupan)

Other uses for Level-1 Trigger scouting

Scouting provides invaluable diagnostic and monitoring opportunities as well

- BX-to-BX correlations available at all times (cosmics, pre/post firing, etc.)
- Real-time heat maps to immediately spot problematic channels
- High-stat cross-check of algorithms (e.g. GT inputs/outputs)

Per-bunch luminosity measurement using physics channels with high statistics Anomaly detection with deep-learning algorithms

HL-LHC 40 MHz L1 Scouting Stageable Architecture

Expect Xilinx Kintex Ultrascale+ based

no backpressure

ngredients

Trigger data captured directly from the Level-1 using spare outputs of the processing boards

- Assuming same 16/25 Gbps serial optical links used for the Level-1 interconnects and using the same protocol
- Input hardware: PCIe boards with (modest) FPGA in 1U PC (I/O node) (uGMT scouting uses KCU1500 [limited to 16 Gbps]) • Zero-suppression, local pre-processing (e.g. re-calibration using ML) in FPGA

 - DMA to host memory for short-term buffering (~2 min)
 - Baseline: eight optical inputs per board (PCIe Gen4 ~ 200Gbps over 16 lanes), one or two input boards per PC

- 1-3 TB short-term buffer (e.g. NVRAM, could be cheaper with acceptable latency)
- 200 Gbps low-latency interconnect (e.g. InfiniBand HDR or 200 GbE)
- Interesting features and/or full "events" (multi-bx possible) streamed over interconnect to global processing "farm"

Distributed global stream processing and storage into "feature DB"

- Organizes features in "searchable" data structures
- Search-engine-like system optimized for numerical data, medium term storage (e.g. key-value store)

Analysis by query, analysis results to permanent storage

I/O nodes (CPU, GPU, other accelerators) use distributed algorithms to extract features while data are buffered in memory

GMT scouting prototype in Run 2

Global Muon Trigger Scouting in Run 2

When: Oct / Nov 2018

Types of runs:

- 1 week of pp run
- Large part of HI run

Capture @ 40 MHz

- Up to 8 final muon candidates
- Up to 8 intermediate muon candidates from barrel region
- GMT adds bunch and orbit counters

40 MHz Scouting **Prototype System** \bowtie

uGMT scouting in action

Data collected in the last week of pp running

- **Online zero suppression to variable-size block** (x8 compression)
- Bzip2 to disk (~x2 compression)
 - About 2.1 GB per 1/pb
- Experimental setup, captured ~50% of data
- ...and for the entire HI run
 - About 28 MB per 1/ub
 - Large contribution from cosmics

About one trillion non-empty BXs collected

About 1 in 20 non-empty BX in pp

<31...eta extrapolated...23><22...quality...19><18...transverse momentum...10> <9...phi extrapolated...0><31...reserved...30><29...eta...21><20...phi...11> <10...index bits...4><3charge valid><2charge><1...iso...0>

Scouting Data PP [GB]

Scouting Data HI [GB]

LHC Emittance scan analysis

Emittance scan = method to determine beam overlap

Beams moved in x (or y) w.r.t. each other

Measure interaction rate by counting muons from GMT 40 MHz scouting

• High statistic needed for per-bunch crossing analysis

Results from GMT scouting compatible with other luminometers

Tim Brueckler et al. (BRIL)

Stream processing prototype (Legnaro / Padova)

Measuring the Throughput with Kafka

GMT + Calo scouting prototype for Run 3

Plan for Run 3 (2021): Muon + Calo Scouting

When: starting 2021

Capture @ 40 MHz

- Up to 8 final muon candidates
- Barrel Muon Kalman Filter muons (displaced Muons)
 - Through GMT or directly
- Calorimeter objects: jets, e/g, sums

High-Level Trigger

Scouting at HLT for Run 3

CMS will continue to use scouting technique in run 3

- Constant luminosity during most of the fill
 - No longer have spare bandwidth & CPU as luminosity goes down
- GPUs available on all HLT nodes
 - Allows for more objects to be reconstructed on HLT
 - Full pixel tracking for all events
 - Enables more particle-flow algorithms to be run online
 - Opens the door for deep-learning applications on HLT
- Detailed plan is being worked out

n run 3 I Iuminosity goes dow

e run online ons on HLT

Other Possibilities for HLT Scouting

Plenty of disk space on local HLT machine

- Could store some pre-selected events on local disk as long as there's space
- Run analysis on these events during interfills or technical stops when CPU is available
- Bookkeeping of number of events/recorded luminosity is challenging
- Needs analysis topics which are insensitive to delivered vs. recorded luminosity \bullet

Large buffer space in event-builder would allow to delay HLT selection

- Idea of a large key-value store (DAQDB) for event building pursued as openlab project Based on relatively low-price large 3D XPoint memory pool ullet
 - - Store events for a few hours before final HLT selection
 - Could allow to run prompt calibration
 - More precision for 2nd stage selection and real-time analysis on HLT
- Could complement L1 trigger scouting by making full event available for selected L1 triggers

DAQDB being Integrated with ATLAS TDAQ

DAQDB

- **Designed for Intel Optane Persistent Memory**
- Data persistence with strong performance and affordable capacity
- Second-line NVMe-based storage to further extend the capacity
- Data structure based on Adaptive Radix Trie (ARTree) for efficient range queries
- DAQ-specific API featuring compound keys, range queries, and next event retrieval

Complete dataflow simulation

- Writer application with embedded DAQDB
- **Client applications for getting fragments**

CHEP 2019, Adelaide, Australia

Summary

CMS is planning a 40 MHz L1 Trigger scouting for system for HL-LHC

- Promising for physics (high resolution objects available at L1)
- Invaluable diagnostic and monitoring tool for the trigger
- Additional per-bx luminometer

Prototyped Global Muon Trigger Scouting in run 2

Planning to capture all Global trigger inputs in run 3

HLT scouting technique will be expanded for run 3

R&D ongoing on various fronts

- HW inference engines
- Stream processing: e.g. Kafka / Spark prototype
- **Distributed algorithms (MPI)**
- **NVRAM** latency
- Searchable Feature DB
- Key-value store to assemble and buffer event fragments before HLT selection

