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Broad Picture: Detection Media for Lower Mass

• Looking at current/future technologies, we have a mix of materials with small but non-zero bandgaps, 
to limit dark counts and maximize energy to carrier conversion

• Extent of these arrows driven by fundamental limitations from kinematics and material properties, and 
assumes large current hurdles can be overcome in energy and charge noise across all experiments

• Recent (June 2019) workshop exploring much more than cosmic visions: https://astro.fnal.gov/ldm/
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US Cosmic Visions, arXiv:1707.04591

https://astro.fnal.gov/ldm/
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Detector R&D Groups

• HVeV (1g Detector Chips)
- Caltech: Sunil Golwala, Yen-Yung Chang, Taylor Aralis, 

Osmond Wen
- Fermilab: Noah Kurinsky, Dan Bauer
- Northwestern: Enectali Figueroa-Feliciano, Ziqing 

Hong, Tom Ren, Ran Chen
- Stanford/SLAC: Blas Cabrera, Betty Young, Francisco 

Ponce, Chris Stanford, To Chin Yu
- University of Minnesota: Matt Fritts, Nick Mast
- University of Florida: Tarek Saab, Corey Bathurst, 

Tyler Reynolds

• Large Area Photon Detectors
- UC Berkeley: J. Camilleri, C. Fink, Y. Kolomensky, M. 

Pyle, B. Sadoulet, B. Serfass, S. Watkins 
- Texas A&M: Nader Mirabolfathi, Rupak Mahapatra, 

Fedja Kadribasic 

• QET Fabrication R&D
- Mark Platt (TAMU), Paul Brink (SLAC)
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SuperCDMS Athermal Phonon Sensors
• In any recoil event, all energy eventually returns to the 

phonon system
• Prompt phonons produced by interaction with nuclei
• Indirect-gap phonons produced by charge carriers reaching 

band minima
• Recombination phonons produced when charge carriers drop 

back below the band-gap

• Phonons are also produced when charges are drifted in 
an electric field; makes sense by energy conservation 
alone

• Total phonon energy is initial recoil energy plus Luke 
phonon energy, as shown at right 
 
 
 

• Athermal phonons collected in superconducting 
aluminum fins and channeled into Tungsten TES, 
effectively decoupling crystal heat capacity from 
calorimeter (TES) heat capacity 
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R&D ‘HVeV’ Prototype Progress

• 10 eV Resolution
- 0.07 electron-hole pairs (140V)

• 3-5% energy efficiency
• 1 gram mass
• No position resolution
• ~1.2 Ohm Resistance
• ~55 mK Tc
• Amorphous Layer
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• 3 eV Resolution
• 0.06 electron-hole pairs 

(50V)
• 25% energy efficiency
• 0.25 gram mass, contact-free 

design
• High position resolution
• ~400-900 mOhm Resistance
• 65 mK Tc
• No Amorphous Layer

• 3 eV Resolution
• <0.01 electron-hole pairs 

(100V)
• 25% energy efficiency
• 1 gram mass, backside 

contact
• High position resolution
• ~300 mOhm Resistance
• 65 mK Tc
• No Amorphous Layer

HVeV v1 HVeV v1.5 HVeV v2 (NF-C)

Device: https://arxiv.org/abs/1710.09335  
DM: https://arxiv.org/abs/1804.10697

Device: https://arxiv.org/abs/1903.06517 In Prep (TUNL, DM)

https://arxiv.org/abs/1710.09335
https://arxiv.org/abs/1804.10697
https://arxiv.org/abs/1903.06517
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QET Optimization

• Longer, thicker Al films have 
longer QP diffusion lengths
- Need to make slits or holes to 

prevent flux traps

• Larger TES overlaps have 
better energy efficiency
- Contribute to TES noise budget!

• Shorter TES means lower 
TES volume, lower resolution
- Long or low Tc TES at risk for 

phase separation
- Bias rails dominate signal losses 

for very small TES volumes
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QET Optimization
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• Longer, thicker Al films have 
longer QP diffusion lengths
- Need to make slits or holes to 

prevent flux traps

• Larger TES overlaps have 
better energy efficiency
- Contribute to TES noise budget!

• Shorter TES means lower 
TES volume, lower resolution
- Long or low Tc TES at risk for 

phase separation
- Bias rails dominate signal losses 

for very small TES volumes

HVeV v1

HVeV v2
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HVeV v1 0.5 Gram-Day Science Spectrum

• Ran the detector for ~12 hours with 
a 1 Hz laser calibration (black line)

• Background consistent with IR at 
low energy, high-energy tail was 
not anticipated
- Could be due to coherent scattering 

component or instrumental background

• Device shows high efficiency, 
excellent resolution, and the ability 
to distguish between ‘true’ events 
and impurity-mediated events 
(unlike CCDs which only measure 
electrons or holes)

• Very simple analysis; it’s easy to 
see how one rules out a quantized 
signal in light of this background
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SuperCDMS Collaboration 2018 (https://arxiv.org/abs/1804.00088 )

https://arxiv.org/abs/1804.00088
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HVeV v1.5: Edge-Dominated Leakage

• Prototype demonstrated position 
dependence in the non-quantized data 
hinted at during HVeV Run 1

• Nearly contact-free biasing scheme 
isolates contact along the crystal edge, 
preventing charge tunneling through 
most of the high-voltage face

• Surface events have a distinct pulse 
shape and can be removed using a cut 
in the pulse-shape plane.

• Non-quantized leakage is dominant at 
high radius; 95% of non-quantized 
events removed by 50% radial cut 
efficiency. 80% of quantized events 
removed by the same cut
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HVeV v2: Combining Lessons

• Used very thin Al backside grid, HVeV 1.5 QET design, no amorphous layer
- High efficiency, high electric fields; world record charge resolution (achieved 0.01 in short run)

• Still seeing some issues with sidewall trapping and incomplete neutralization
- We observe ~15% trapping

• Physics results from Nuclear Recoil calibration at TUNL and DM search at Northwestern 
coming soon!
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https://agenda.infn.it/event/15448/contributions/95710/

https://agenda.infn.it/event/15448/contributions/95710/


12/10/2019     Noah Kurinsky

Future for HVeV Program

• Mounting issues damaged 
some prototypes (X’s)

• 2 1g v2 detectors, optimized 
for dynamic range, now 
successfully operated

• 2 4g detectors currently being 
mounted (both optimized for 
low energy resolution)

• Many more prototypes to help 
test the resolution and 
efficiency models that go into 
this detector design
- Multiple designs with sub-eV 

projected resolutions
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NEXUS: Underground Experimental Site for R&D
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NEXUS Projects (Current and Proposed)

• HVeV Dark Matter Science (Ongoing)
- Including HVeV/QET R&D outlined here
- Installation of UV, Visible, and BB IR sources

• Nuclear Recoil Charge Yield in Si/Ge (In Prep w/ Enectali Figueroa-Feliciano at 
Northwestern)
- Also exploring using DD generator for non-cryogenic detectors

• KIDs on Si (In Prep w/ Sunil Golwala at Caltech)
- Installation of RF readout

• Testing Athermal Phonon Effects on QuBits (In Prep w/ D. Bowring at FNAL)
- Uses KID RF readout with minor modifications

• meV-Gap Photodetectors as DM Detectors (Proposed w/ Y. Kahn at UIUC)
- Possible multi-lab collaboration

• Your proposal?
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Design of a Large Area Photon Detector 

• The detector is a CDMS-style athermal 
phonon sensor
- 1 mm thick silicon wafer, 45.6 cm^2 surface area
- Mass of 10.6 grams

• The device has been optimized for photon 
detection
- Distributed athermal sensor array read out by TESs
- Single distributed channel gives a fast collection 

time of athermal phonons
- This reduces efficiency penalties due to athermal 

phonon down conversion
- T_c=41.5 mK, lowering the expected energy 

resolution
• Designed originally for degraded alpha 

rejection in neutrinoless double beta decay 
and for an active photon veto for dark matter 
experiments
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Design of a Large Area Photon Detector

• The detector is a CDMS-style athermal phonon 
sensor
– 1 mm thick silicon wafer, 45.6 cm# surface area
– Mass of 10.6 grams

• The device has been optimized for photon detection
– Distributed athermal sensor array read out by TESs
– Single distributed channel gives a fast collection time 

of athermal phonons
– This reduces efficiency penalties due to athermal

phonon down conversion
– $% = 41.5 mK, lowering the expected energy resolution

• Designed originally for degraded alpha rejection in 
neutrinoless double beta decay and for an active 
photon veto for dark matter experiments

22 July 2019 LTD-18, Milano 4

https://agenda.infn.it/event/15448/contributions/95785/

https://agenda.infn.it/event/15448/contributions/95785/
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Reducing Readout Noise

• Readout noise limited by thermal 
fluctuation shot noise between sensor 
and crystal
- Can reduce this only by weakening the link 

between the sensor and absorber, or 
dropping the sensor temperature

- Power noise at the level of 1e-18 aW/sqrt(Hz)
- Hitting readout limitations

• Power to current gain impacted by total 
heat capacity of the sensor
- Make smaller sensors

• Massive on-sensor multiplexing
- Readout smaller sections of the detector
- Use MKIDs or other naturally multiplexed 

sensors rather than DC TES
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https://agenda.infn.it/event/15448/contributions/95785/
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Detector Performance 

• From the good randoms after cuts, the energy resolution is now directly 
calculable  

• We find that this detector has an energy resolution of σ_E=3.9±0.1(stat.)
±0.18(sys.) eV
- This detector is a world-leading device for detecting photons given its size!

• We have therefore demonstrated O(3) eV resolution across 2 orders of 
magnitude in mass!
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Detector Performance

• From the good randoms after cuts, the energy resolution is now directly calculable

• We find that this detector has an energy resolution of !" = $. & ± (. ) *+,+. ±
(. )-(*/*. ) 12
– This detector is a world-leading device for detecting photons given its size!

22 July 2019 LTD-18, Milano 8

Sensor Area (cm2) 6" [eV] 9"
:;1, [<=>?]

CRESST 2 LD
Rothe et al JLTP 193,1160 (2018)

W TES 12.5 4-7 1.1-2.0 

LMO-3 LD
E. Armengaud et al, Eur. Phys. J. C (2017) 77 :785

NTD 5 7.7 3.4

CALDER
1801.08403

Al/Ti/Al MKID 4 26 13

This Detector W TES 45.6 3.9 0.58
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TES Noise Power Developments
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https://indico.fnal.gov/event/20385/session/47/contribution/4/material/slides/0.pdf

https://indico.fnal.gov/event/20385/session/47/contribution/4/material/slides/0.pdf
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Scaling Up in Mass
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Scaling Up in Mass
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Faster Signal

Lower Sensor  

 Noise
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Scaling Up in Mass
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Faster Signal

Lower Sensor  

 Noise

Sets Operating Voltage for NTL Single-Charge Readout

Large-Scale Multiplexing
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Carbon-Based Detectors

• SiC/Diamond are semiconductors with long-
lived charge excitations

• Carbon has a lighter nucleus than either Si or 
Ge, giving it a kinematic advantage for low-
mass Nuclear recoils

• Can withstand >10x larger electric fields than Si 
or Ge, and has many orders of magnitude lower 
leakage current even at room temperature

• Radiation hard; ~10x larger displacement 
energies (studied by RD42)

• SiC has many of the same properties, and is 
strongly polar
- In many ways intermediate between Si and diamond

• You get similar benefits from Sapphire (Al2O3) 
but with a more complex crystal structure
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Kurinsky, Yu, Hochberg, Cabrera (1901.07569)



12/10/2019     Noah Kurinsky

Example: Diamond Calorimeter
• Diamond, Ge, and Si have similar phonon 

characteristics, but diamond has higher energy, 
longer-lived phonon modes

• Phonons are 3x faster than in Si, 4x faster than in Ge

• Phonon lifetime is limited by crystal size to much 
higher temperatures - larger crystals have less 
phonon down-conversion

• It is easier to improve resolution by simply making the 
TES volume smaller, since the phonons can be 
allowed to bounce around the crystal more without 
down-conversion

• Here we consider ~30-300 mg crystals in order to 
minimize phonon collection time, such that the 
readout in TES dominated at all critical temperatures 
and phonon sensor geometries
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Kurinsky, Yu, Hochberg, Cabrera (1901.07569)
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Best Materials (of Crystals)

• Easy to make a case for Diamond/SiC + Sapphire + low gap (InSb, etc) to 
carve out next round of low-mass (keV - GeV) dark matter parameter space  
(from https://arxiv.org/pdf/1910.10716.pdf, Griffin et. al. 2019)
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SiC

https://arxiv.org/pdf/1910.10716.pdf
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Summary of Future Work

• Continuing QET R&D
- Still can improve efficiency by 2x
- Find ways to move to small TES (photolithography, etc) at same Tc, reduce impact of wiring (e.g. Nb wires)
- Push to lower Tc
- Need to mitigate extant source of environmental noise, which is a large challenge with current electronics
- Explore new TES films (IrPt, AlMn)

• Mitigate Leakage in HV devices
- Blocking layers or new materials
- Contact-free design being pioneered by Mirabolfathi group at TAMU

• Explore KID readout
- Al and AlMn KIDs being studied by Caltech/FNAL
- Implicit advantage for massive multiplexing

• Moving to new materials
- Making devices from Sapphire, Diamond, SiC
- Demonstrating HVeV performance on Ge
- Use superior material properties to scale in mass and threshold over Si performance
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HVeV v2 1cm Designs

• Best for NR
- UCB A/C - low coverage, single 

channel
- 600 mOhm normal state resistance

• Best for ERDM
- Optimized for baseline resolution with 

varying levels of Al coverage
- 900 mOhm Rn - NF F, G, H
- 300 mOhm Rn - NF A, D, E

• NF-A is roughly the same as QP.4, i.e. 
AR64

• Best for Calibrations
- Sacrifice baseline resolution for higher 

dynamic range
- 300 mOhm normal state - NF-B/C
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https://confluence.slac.stanford.edu/display/CDMS/HVeV+v2+Design

NF-H

NF-C

UCB-C

https://confluence.slac.stanford.edu/display/CDMS/HVeV+v2+Design
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NEXUS Si/Ge Dark Matter Search Timeline
• Spring-Fall 2019 (ADR Demonstrator): 1 gram

- 1 gram, 4 eV resolution (20 eV threshold)
- 0.01 electron-hole pair resolution (<1 e-h threshold)
- 4 eV to 4 keV in energy
- DM search with 1 gram-week

• Winter 2019 - Spring 2020: 10 grams, 
- 2-4 ~4g detectors
- 4 eV resolution (20 eV threshold), 
- 0.01 electron-hole pair resolution (<1 e-h threshold)
- 4 eV to 40 keV in energy
- DM search with 1 gram-month

• Late 2020 - 2021: 30-100 grams, 
- 4 eV resolution (20 eV threshold)
- 0.01 electron-hole pair resolution
- 4 eV to 40 keV in energy
- DM search with 1-10 gram-year (~kg day)

• 2021+: 10 kg payload
- <20 eV threshold
- Up to 60 keV in energy
- 0.01 electron-hole pair resolution
- DM search/neutrino physics with 1 kg-year of exposure
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NEXUS Si/Ge Dark Matter Search Timeline
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Leakage R&D

Larger Crystals or Multiplexing

• Spring-Fall 2019 (ADR Demonstrator): 1 gram
- 1 gram, 4 eV resolution (20 eV threshold)
- 0.01 electron-hole pair resolution (<1 e-h threshold)
- 4 eV to 4 keV in energy
- DM search with 1 gram-week

• Winter 2019 - Spring 2020: 10 grams, 
- 2-4 ~4g detectors
- 4 eV resolution (20 eV threshold), 
- 0.01 electron-hole pair resolution (<1 e-h threshold)
- 4 eV to 40 keV in energy
- DM search with 1 gram-month

• Late 2020 - 2021: 30-100 grams, 
- 4 eV resolution (20 eV threshold)
- 0.01 electron-hole pair resolution
- 4 eV to 40 keV in energy
- DM search with 1-10 gram-year (~kg day)

• 2021+: 10 kg payload
- <20 eV threshold
- Up to 60 keV in energy
- 0.01 electron-hole pair resolution
- DM search/neutrino physics with 1 kg-year of exposure
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Collision Kinematics

• Recoil energy for a typical WIMP 
velocity depends on target mass and 
recoil type

• Electron and nuclear recoils have 
different kinematics; nuclear recoils are 
simple elastic collisions, electron 
recoils are largely inelastic and depend 
on electron orbital and kinematics 
within the bound electron-atom system

• In addition to momentum transfer for a 
fixed velocity, using a velocity and 
angular distribution yields an expected 
energy spectrum
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• Calorimeter energy resolution is fundamentally 
limited by thermal fluctuations between the 
sensing volume and the bath regardless of 
detector geometry; this minimum resolution follows 

• One way around the volume limitation is by 
collecting the energy before thermalization; the 
volume is thus the sensor volume, not the target 
volume

• Even with target decoupling, the tradeoff between 
sensor volume and energy efficiency requires 
temperatures below ~50 mK for sub-GeV dark 
matter

Calorimeter Resolution
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Aside: History and Economics
• Diamond have been used as ionization-chamber 

style charge detectors since the 70’s

• The main barrier historically was cost, purity, and 
form factor
- The lack of man-made diamonds meant groups normally 

had to rely on a source with access to natural diamond, 
and select the few diamonds with the best performance

• In the last 5 years, the cost of high-quality lab-
grown diamond has dropped from ~$6000/carat to 
$2000/carat, and recently gem-gem-quality 
diamonds could be purchased by consumers for 
$800/carat

• This is driven by the electronics industry, which is 
aiming to use diamond both as a heat sink and as 
a semiconductor for high-high-power, high-
temperature transistors

• Diamonds have also come into use as a potential 
storage medium for quantum computing
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Experimental Setup

37

Romani et. al. 2017 (https://arxiv.org/abs/1710.09335 )

https://arxiv.org/abs/1710.09335
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Results from Stanford Test Detector: Linearity

• Energy gain is linear in voltage up 160V - highest voltage testable within 
safety limits of our electronics

• Clear separation seen between 0 and 1 photon peaks!
• Noise does not increase with voltage; we achieve the best signal/noise 

scaling possible for this technique
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Romani et. al. 2017 (https://arxiv.org/abs/1710.09335 )

https://arxiv.org/abs/1710.09335
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Non-Quantized Backgrounds

• During the initial experiment we saw that 15% of the events were non-quantized, 
which can be due to additional charge liberated from impurity states
• Impact ionization: drifting charge ionizes an impurity
• Trapping: drifting charge stopped by an impurity
• IR: shallow impurity wells liberated by IR leaking in from warmer stages

• Hypothesis pointed to IR as the dominant cause due to high correlation with laser 
activity
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Figure Courtesy R.K. Romani

Romani et. al. 2017 (https://arxiv.org/abs/1710.09335 )

https://arxiv.org/abs/1710.09335
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Effect of IR Filtering

• Adding additional IR filtering improved fill-in regions between laser calibration 
peaks, validating the idea that our laser and background data was IR limited

• The calibration data after IR filtering is consistent with impact ionization/trapping at 
the 2-3% level

40

Romani et. al. 2018 (https://arxiv.org/abs/1710.09335 ) SuperCDMS Collaboration 2018 (https://arxiv.org/abs/1804.00088 )

https://arxiv.org/abs/1710.09335
https://arxiv.org/abs/1804.00088
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Impurity Binding Energies

41

~1011 cm-3

~1013 cm-3
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Understanding Volume Leakage Backgrounds

• Some variation seen due to pre-
bias
- Need to increase pre-bias voltage range
- Determine what voltage empties traps 

reliably

• Neutralization seems to have 
elevated bulk leakage by ~3 for a 
matter of days

• Voltage polarity flip doesn’t change 
bulk leakage rate

• Neither change impacts leakage 
above 2.5 e-h pairs (to this level of 
statistics)
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