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The LHC Big Data Problem

Data Flow
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L1 Trigger HLT Farm

40M bunch crossing per
second
Logging rate: ~100 kHz

Non-zero suppressed RAW
data rate ~1PB/s

Zero suppressed data rate is
~20TB/s
Coarse local reconstruction

implemented on
FPGA/hardware.

* Logging rate ~1kHz

* Data rate ~1GB/s
distributed over dozens of
primary datasets

* Simplified global
reconstructions
implemented on CPUs.

Offline Computing

* Roughly 1GB/s data rate
* Global reconstruction fully

optimized for accuracy

with software implemented
on CPUs.

Data Analysis

* User-written code, plots,
theses, talks, etc.

* ~100 papers of 10 MB
each year, less than 1kB/s
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Trigger at LHC
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Trigger at HL-LHC

* The High-Luminosity of LHC:
* Higgs, Flavour, Gauge Hierarchy, Supersymmetry, Dark
Matter
* O(100) GeV mass scales = O(50) GeV endpoints =
0(20) GeV thresholds 0 20 5o PriGeV]

* Weak-scale physics — Large statistics — High luminosity
— Harsh environment!

» Qreat effort on upgrading Phase 2 Trigger system at HL-
LHC

Simulated Event Display at 140 PU {102 Vertices)

» Science potential of HL-LHC determined by datasets it
collects




Workflow of Searches
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The LHC Big Data Problem
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Could new physics have been
discarded somewhere in this process?



Model-Independent
Searches in HEP
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AN Alternative Approach

* General approach by model-independent
searches:

* Look for discrepancy from the kinematic
distribution of data versus expectation
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* Look-elsewhere effect dilutes the SRR EEEFRNEEES S - T SO
discovery power with large number of bins. e g (e,
* ATLAS’ proposal: use the analysis to

Identify an excess, but establish the
significance with a traditional method
(supervised) on an independent dataset.

Same spirit we have in mind for what follows... CERN-EP-2018-070


https://cds.cern.ch/record/2631806%3Fln=en

* Compression-decompression algorithm that

Autoencoders

learns to describe the a given dataset in terms of

point in lower-dimension /latent space, from which

it reconstructs the original data.

* Unsupervised learning, used for data
compression, generation, clustering, etc.

* Anomaly: any event whose decompressed output

Is “far” from the input, iIn some metric of the
autoencoder loss.
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INn a Nutshell

Encoder

Code

Latent space

Output

Decoder

!

[ oss = f(input — output)



Autoencoders @ Level-1
Trigger

Standard Triggers AE Triggers

trigoer tareshoid
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m,g AE Reconstruction Loss

» A Model-Agnostic Trigger for anomaly events with autoencoder (AE) model
* Deployment at Level-1 trigger to avoid any bias from upstream
« But limited by the resource and latency requirement on the Level-1 trigger system



CMS Phase 2 Level-1Trigger

Calorimeter trigger Muon trigger Track finder

Dotoctor Backend gystoms | — * Sketch of upgraded CMS Phase
[ er EREHI i [ | ™ 2 Level-1 Trigger system

* Produce Particle Flow particles,
ceeal— combining Calo/Muon/Tracker
information

Global Calorimeter b i e Global Track
Trigger B /.. Trigger

+ * Produce PUPPI weight of each
particles for pileup mitigation

Correlator Trigger

* Outputs of each trigger systems
send to Global Trigger for Level-1
Phase-2 trigger project decision

Global Trigger GT




« Activation function: RelLU

Example AE Model

 Train with simulated ZeroBias event at 200 pileup

» Use simulated Puppi Jet/MET/MHT inputs (18 inputs) with
preprocessing

' ReLU
» |Loss function: L1Loss Uz,9)=L={l,..,Ix}', b=|ea—1al,

 Training - validation ratio : 0.8
* Number of epochs: 100-200 epochs

» Number of layers: 8 layers

» Model is designed with simplicity for firmware implementation and
resource/latency requirement



Signal efficienc

AE Performance

CMS Phase-2 Simulation 14TeV, 200PU
L L L L L

b

— VBFHoInv. -
— VBF H - bb
— HH-4b

i Work In progress “

Rate [kHZ]

* Model was trained and validated with
simulated Zerobias events, no
knowledge of sighal during training

* Use the reconstruction loss of AE
inputs and outputs as discriminator

* Inference with signal samples show
the separation power
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AE Implementation "'s 4 ™

Use the hls4dml package to implement the AE model into FPGA
firmware

* With additional logic for L1Loss function calculation

Fully unroll AE with minimal latency, well within the Phase 2 Global
Trigger latency budget

With Xilinx Virtex UltraScale+ (VU9P) FPGA, the AE consumes
~10% of DSP resource, ~1% of Filp Flop and LUT

To be included in the upcoming CMS Phase 2 Level-1 Trigger TDR



How to use the stream?

* Not to claim a discovery!

* Use as a resource to guide new physics searches Iin
subsequent data takings, with some extra ingredients:
* Data mining & visual inspection,

* BSM-agnostic hypothesis testing.
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Data Mining &

Visual Inspection

* Macroscopic and microscopic

views of the saved data stream.

* Learn any repeated patterns of

events.

®* Select a set of anomalies for

visual inspection.
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CMS.

Wide Jet O: AK4 Jet 0.
pt=3.5TeV pt = 2.16 TeV
Mass = 1.8 TeV eta =0.27

| Y
AK4 Jet 2, _!-__‘
pt = 1.68 TeV S
eta=0.21 ~
phi = 2.45
AK4 Jet 3,
” pt = 1.40 TeV
eta =-0.74
s phi =-1.17
TR Wide Jet 1:
et1, -
ot = 1.99 TeV pt=3.4 TeV
eta=0.29 Mass = 1.8 TeV
phi = -1.27

CMS Experiment at LHC, CERN
Data recorded: Sat Oct 28 12:41:12 2017 EEST

Run/Event: 305814 / 971086788
Lumi section: 610
Dijet Mass: 8 TeV

CMS-PAS-EXO-17-026



http://inspirehep.net/record/1693731

Learning New Physics
from a Machine

Agnolo & Wulzer, arXiv:1806.02350
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* Use SM MC as null hypothesis,

run hypothesis testing without INPUT OUTPUT
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* Allow for isolation of anomalous
events by looking at their
contribution to the likelihood ; \*j?;‘;‘:“fﬁﬁmmﬂ
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https://arxiv.org/abs/1806.02350

Conclusions

The LHC has an enormous potential of discovering physics beyond the
Standard Model, given the unprecedented collision energy and the large
variety of production mechanisms that proton-proton collisions can probe.

We propose a model-independent anomaly detection technigue, based on
deep autoencoders, to identify new physics events

Simple AE model can be implemented at the Level-1 trigger level

More advanced AE model can be designed for HLT or 40MHz scouting
system (arXiv:1811.10276)

Stay tune for the CMS Phase 2 Level-1 Trigger TDR







