

A low-background structural scintillator for rare event physics experiments

Michael Febbraro On behalf of the PEN working group

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Motivation

- Active vetos are a crucial component of detection systems designed for rare event physics
 - Needed to reduce backgrounds to ultra-low levels required for dark matter, $0v2\beta$, neutrino physics,...
 - Ideally, we'd like to limit the amount of *inactive* components near the sensitive detection volume
- Inactive materials
 - Structural components, cables and connectors, electronics, ...
 - Typically electroformed copper, PTFE, ...
- Can we replace some of these *inactive* components with an *active* component such as a scintillator?
 - Once possibly is recently discovered scintillator: poly(ethylene 2,6naphthalate) (PEN)

Poly(ethylene 2,6-naphthalate) (PEN)

PEN excited with UV light

PEN working group

- 20+ active members
- 7 Institutions

Luminescence of PEN

- PEN is a semi crystalline aromatic polyester composed of naphthalene repeat units
- PEN inherently scintillates with emission ~445 nm without addition of fluors
- Origin of scintillation likely due to a short-lived dimer state ?
 - Red-shift observed with increasing in concentration of naphthalene dicarboxylate molecules

.

.

0

400

200

250

300

350

450

500

550

Wavelength (nm)

PEN scintillation & WLS properties

- Light yield ~1/3 of conventional plastic scintillators
 - Recall PEN has no fluors limited by dimer decay?
- Particle identification using pulse shape discrimination (PSD) possible
- PEN is a wavelength shifter for LAr scintillation light (128 nm)

ORNL ²⁵²Cf fission chamber

AK RIDGE National Laboratory

PEN mechanical properties

- Very chemically resistant to most acids and organic solvents
 - Can be aggressively cleaned
 - Requirement for low background experiments!
- 3-point bending test of material at room and $\ensuremath{\text{LN}}_2$ temperatures at MPI
 - High structural stability at room and cryogenic temperatures

	PTFE ¹	Cu ²	Electroformed Cu ⁵	PEN	PEN at 77 K
Tensile Strength $\sigma_{ m el}$ [MPa]	< 45.0	100	85.8 ± 7.8	108.6 ± 2.6	209 ± 2.8
Young's Modulus E [Gpa]	< 2.25	128	77.8 ± 15.6	1.86 ± 0.01	3.71 ± 0.08

1 <u>https://www.treborintl.com/content/properties-molded-ptfe</u>

2 http://www.memsnet.org/material/coppercubulk/

3 https://www.pnnl.gov/main/publications/external/technicalreports/PNNL - 21315.pdf

PEN synthesis at ORNL

- Can we make low-background scintillator grade PEN? ۲
- Synthesis efforts focused on low-background PEN derivatives ullet
 - Higher light yield, reduction in radio impurities, improved optical properties
- Two-step synthesis method: *Transesterification* \rightarrow *Polycondensation* ٠

PEN monomer - BHEN

Scintillator Laboratory at ORNL

- Physics division's chemistry support laboratory is growing!
 - Synthesis, fabrication, and characterization of organic scintillator detectors
 - Experience with isotopically enriched scintillators
 - Organic synthesis setups, gloveboxes, Laminar flow hoods, chemical purification
 - Gas chromatography mass spectrometer (GCMS)
- Currently supports multiple projects
 - Low energy nuclear physics (FRIB)
 - Neutrinoless double beta decay (LEGEND)
 - Neutrino physics (COHERENT)
 - Applied nuclear science applications

Reactor setup at ORNL

- 500 g batch reactor setup
 - Magnetically coupled-stirrer bearing
 → reduced oxygen contamination
 - Torque sensor for molecular weight monitoring
- Transesterification step is straight forward
- Challenge is the melt polycondensation, obtaining high MW, and reducing discoloration
 - GeO₂ used instead of Sb₂O₃ → radioclean catalyst!

CAK RIDGE National Laboratory

- Viscosity of the material increases with increasing molecular weight and hinders extraction of ethylene glycol needed for chain growth
- Careful balance of catalysts, thermostabilizers, mixing, vacuum, and temperature

Transparency of PEN

- Crystallization leads to scattering of light on boundaries
 - Polymer becomes opaque
 - Can be controlled using rapid cooling but not always possible for complex or large geometries
- Introduction of a copolymer can reduce crystallization
 - Demonstrated with PET

CAK RIDGE National Laboratory

- PETG or "glycol modified PET"
- Common copolymer is cyclohexanedimethanol or CHDM

Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. Edited by J. Scheirs and T. E. Long © 2003 John Wiley & Sons, Ltd ISBN: 0-471-49856-4

ORNL synthesized PEN -CHDM loading (mol %)

Ethylene glycol

1,4-Cyclohexane dimethanol (CHDM)

R&D on injection molding and bonding

- Progress on producing arbitrary shapes
 - Plates / disks
 - Fibers
 - Capsules / containers
- Evaluation of radio-clean joining techniques
 - Ultrasonic welding
 - Low-background glues and adhesives

Can PEN components be made cleanly?

Mould

Material

Injection moulding machine

Radioclean production run

- First clean production run of PEN at TU-Dortmund
- Clean room ISO 6 (close to ISO 5)
- Use commercially available PEN granulate
 - First rinse with ultra-pure water
 - Ultrasonic bath with isopropanol
 - Final rinse with ultra-pure water and dried with boiloff nitrogen
- All parts which came in contact with PEN were new and etched in nitric acid or cleaned with micro-90
 - Injector assembly was completely rebuilt
 - New screw, injector nozzle, dosing hopper cleaned with micro-90 and ultraclean water
 - New mold plates which were acid etched
- Entire process from granulate to finish product performed in less than <u>4 mins per part</u>
 - Injection compression molding
 - Optical characterization
 - CNC machining
 - Photography
 - Bagging and documentation

Overview of cleanroom layout

Optical scanner

Control station / QA / Overseer

Injection/compression molding

CNC machining

Photography, bagging, and labeling

CAK RIDGE

Handling procedure

- Tile surface never handled directly with gloves or touched
- Operations performed using foot switches or from control station
- Pre-machining: tiles handled by sprue which is removed just before machining
- Post-machining: tiles handled using acid-etched stainless steel tongs using central hole
- Contact surfaces include: magnetic optical scanner stage, vacuum chuck for CNC, 3-point fixture for photography

CAK RIDGE

Low-background Production run

- Total of 291 tiles were produced
- Optical transmission scans at 450 nm
 Well-match with PEN emission
- 242 tiles sent out for radioassay
 - 112 Obelix
 - 130 GeMPI

Optical scan – Accepted tile

Radiopurity – Intermediate results

- Intermediate results from LNGS
- Radioassay measurements from M. Laubenstein
- Upper limits with k=1.645, uncertainties are given with k=1 (approx. 68% CL)
- Tiles are still being counted

Radio assay of PEN tiles from production run					
Weight:	14.3 kg (131 til	es) Proliminary			
Live time: 43 days					
		μ Bq/kg	g/g		
Th-232	Ra-228	80 ± 30	19 ± 7 x10 ⁻¹¹		
	Th-228	< 46	< 1.1 ± 7 x10 ⁻¹¹		
U-238	Ra-226	80 ± 20	6 ± 2 x10 ⁻¹²		
	Th-234	< 2400	< 1.9 x10 ⁻¹⁰		
	Pa-234m	< 1500	< 1.2 x10 ⁻¹⁰		
	U-235	< 62	< 1.1 x10 ⁻¹⁰		
	K-40	< 230	< 7.3 x10 ⁻⁹		
	Cs-137	< 19			

Conclusion

- The polyester PEN has been demonstrated as a possible structural active veto scintillator
- Exhibits desirable mechanical properties at room and cryogenic temperatures
 - Good chemical resistance \rightarrow Can be aggressively clean!
- Fluorescence observed at ~445 nm
 - Well-match with SiPM / PMT
 - Particle discrimination possible
 - Light output ~1/3 of conventional plastic scintillators
- New amorphous PECN (PEN-G) formulations produced at ORNL exhibit enhanced optical clarity during processing of complex or thick geometries
- Low-background PEN components can be prepared for rare-event physics experiments

