LLNL-PRES-798598

Cosmogenic Background Characterization with **PROSPECT**

Xianyi Zhang 12/10/2019 for the PROSPECT collaboration

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Introduction

- Cosmogenic neutron background is one of the challenges in rare event detection experiments, especially for on surface experiments.
- Many experiments rely on simulation of cosmogenic or local neutron backgrounds.
- The PROSPECT detector is deployed to measure reactor antineutrino spectrum on-surface.
- The detector design and event selection strategy enables PROSPECT to measure cosmic background in situ and achieve our physics goal.

PROSPECT

- Experiment goals:
 - Probe the ~1 eV sterile neutrino oscillation 7-9 m from the HFIR reactor.
 - Measure ²³⁵U antineutrino spectrum.
 - Remote, and non-intrusive evaluation of reactor activity.
- **Reactor**: HFIR (a) ORNL, 99% antineutrino from ²³⁵U.
- **Detector:**
 - Optically segmented LS detector;
 - Detects IBD, 7-9 meter from the HFIR reactor;
 - 1 m.w.e. overburden.

Detector Design

- Multi-layer passive background shielding.

IBD Measurement Strategy

- Neutrino induced IBD event signatures in the PROSPECT detector:
 - Prompt β^+ ;
 - Delayed α and ³H generated from neutron captured by ⁶Li (~10s µs delayed).
- PSD of the LS and timing information is used to distinguish β -like and n-like events.

Background Characterization PRESPECT

• Cosmogenic fast neutron within the IBD selection window (10s µs scale) is the primary source of the IBD-mimic events near the earth surface.

- Ambient surface neutron spectrum, and toy model processed through 1 m.w.e. shielding.
- Cosmic fast neutrons dominate flux in detector at

With ~10 m.w.e. overburden, neutrons are sufficiently attenuated that local muon spallation becomes dominant background source.

Cosmogenic Neutron Background in the PROSPECT's IBD Detection

Most false IBD events come from one of the two interaction mechanisms:

- Capture, capture: subsequent captures of two thermalized neutrons. The earlier is captured by unintended nucleus and the later captured by ⁶Li.
- **Recoil, capture**: gamma-like events generated from the recoil of the same or different neutrons prior to a n-Li capture.

Background Rejection Strategy PRESPECT

- Event selection:
 - Neutron capture identification (⁶Li Capture + PSD)
 - Prompt event identification (PSD, segmentation) without PSD, potentially possible with detailed topology information.
 - Shower veto (high energy muon, recoil, or neutron capture)
 - Prompt-delay distance (position reconstruction)
 - Fiducialization (detector as active shielding)
- Accidental: prompt and delay off-window event selection.
- **Background**: reactor off measurement

Shower

IBD-like

Illustration of track and directional reconstruction

- **Event selection:**
 - Neutron capture identification (⁶Li Capture + PSD)
 - Prompt event classification (PSD, segmentation) without PSD, potentially possible with detailed topology information.
 - Shower veto (high energy muon, recoil, or neutron capture)
 - Prompt-delay distance (position reconstruction)
 - Fiducialization (detector as active shielding)
- Accidental: prompt and delay off-window event selection.
- **Background**: reactor off measurement.

segment x

Simulated accidental rate in each cell.

Background Rejection Capability prespect

background measurement

LLNL-PRES-798598

- Rejecting prompt event neutron recoils via PSD selection is most critical.
 - Sufficient detector size to fiducialize can increase overall sensitivity.
- Shower veto especially effective on capture, capture mechanism.
- Prompt/delay topological cut is straightforward in a detector with few cm position resolution.

- PROSPECT's Geant4 simulation is able to predict the patterns of background rejection.
- On the earth's surface, muons produce much less correlated background than cosmogenic neutrons.

Background Normalization

- various backgrounds.
- atmospheric pressure.

Fast neutron rate vs AP

• Correlations between atmospheric pressure (AP) and background rates were studied among

IBD-like background is subtracted upon veto induced dead time and the variation from the

CPAD Instrumentation Frontier Workshop 2019

12

IBD After Background Subtraction prespect₇

• S:B ~ 1.7:1.

Phys. Rev. Lett. **121**, 251802

LLNL-PRES-798598

• With proper background measurements and subtraction, PROSPECT achieved precise measurement of spectra along the 7-9 m baseline, on earth surface.

Relative IBD spectrum comparison

Absolute IBD spectrum

PRL **122**, 251801 (2019)

Contribution of PROSPECT in Neutron Background Measurement

- PROSPECT can be used to demonstrate the cosmic neutron modeling with its data-MC comparison.
- PROSPECT-style detector (with PSD + ⁶Li + segmented scintillator) can also be utilized to measure neutrons that hard to be modeled:
 - Making *in situ* measurement of near surface cosmogenic neutron. (i.e. SBN)
 - Measuring beam induced neutron background. (i.e. decay at rest boosted neutrino measurement, coherent neutrino scattering)
 - Underground neutron background measurements. (i.e. DUNE, LZ)

14

- beam induced neutrino experiments.
- measurement in situ.
- the community by benchmarking cosmic ray models.
- cosmogenic and beam generated neutron backgrounds.

• Neutron background is one of the outstanding challenges among on-surface and

• PROSPECT is able to measure reactor antineutrino spectrum with background

• PROSPECT's measurement of the near surface cosmogenic neutron can benefit

• PROSPECT-style detector can also be applied in other P5 experiments to measure

CPAD Instrumentation Frontier Workshop 2019

15

Thank you!

Institutions:

ILLINOIS INSTITUTE OF TECHNOLOGY

ence Liverr

tional Laborator

Funded by:

WISCONSIN-UNIVERSITY OF WISCONSIN-MADISON

BROOKHAVEN NATIONAL LABORATORY

