Improving light collection efficiency of silicon photomultipliers through the use of metalenses

A.A. Loya Villalpando*, W.T. Chen, R. Guenette, J. Martin-Albo, J.S. Park, F. Capasso

*alvaro.loya@nikhef.nl

CPAD

Madison, Wisconsin December 8, 2019

Outline

> Motivation

• SiPM coverage in particle detectors

Metalenses

- introduction what and why
- working principle
- SiPMs with metalenses
 - experimental design
 - beam profiling and metalens efficiency
- Results and Outlook

Motivation

Particle detectors with SiPMs

Many experiments could benefit from increase in light collection by SiPMs
Οvββ, dark matter, event neutrino, etc.

DARWIN Collaboration

DARWIN

A.A. Loya Villalpando

Light collection of SiPMs

Why SiPMs?

- single p.e. resolution
- low voltage + high gain
- compact (radiopurity)
- improving VUV sensitivity

Why fewer/smaller SiPMs?

- cost
- simpler electronics
- fewer readout channels
- recycle existing infrastructure

Why increase light collection of SiPMs?

- track/position reconstruction
- energy resolution/ threshold
- trigger efficiency

A.A. Loya Villalpando

~ 1% area coverage by SiPMs in NEXT

CPAD 2019

Metalenses

What are Metalenses?

- multifocal diffractive lenses
- optimized for specific/ multiple wavelength(s)
- nanostructures on thin substrate

click here for a video introduction!

optical image of single metalens

schematic of metalens nanostructures

SEM image of nanofins (metasurfaces)

Images: Khorasaninejad et al., Science 352, 6290 (2016)

A.A. Loya Villalpando

Why use metalenses?

Advantages

- low cost
 - currently < \$10 each
 - smaller SiPM + metalens < larger sipm (3 to 5X)
- compact
 - radiopurity
 - simple mechanical integration
- simple fabrication
 - single layer lithography
 - mass production ok

Potential applications

- replacement of refractive lenses
- particle detectors!

array of 1 cm diameter metalenses λ_{d} = 632 nm (this work)

A.A. Loya Villalpando

Light diffraction by metalenses

A.A. Loya Villalpando

CPAD 2019

increasing deflection angle

Light focused by metalenses

0th order (~ 20% eff) 1st order (~ 38% eff) 2nd order (~15% eff) 3rd order (~ 5% eff)

incident light

* efficiency and location of foci by design - adjustable

metalens

A.A. Loya Villalpando

CPAD 2019

*

SiPMs with Metalenses

Concept & questions

- concept
 - large photodetection area coverage by metalenses projected onto (small) SiPMs

• questions

- optimal SiPM location?
- dependence on SiPM size?
- how much can the light collection be increased?
- what influences this increase?
- what is the light transmission efficiency of the metalenes?

Experimental design

- 1.3 x 1.3, 3 x 3 and 6 x 6 mm² SiPMs (Hamamatsu S13370) \bigcirc
- signal as a function of distance from the metalens location
 - with and without metalens in place Ο

1st order focal point

SiPMs' signals

SiPM signals with metalens

SiPM signals without metalens

signal shape without metalens

1/r² dependence

- signal shape with metalens
 - projected beam profile + metalens efficiency
- A.A. Loya Villalpando

CPAD 2019

Ο

Signal shape with metalenses

signal (beam diameter, intensity)

SiPM

Beam profiling

- **Thorlabs BP209**
 - beam width (> 13.5% of max intensity) 0

A.A. Loya Villalpando

4000

x-profile

Bessel Fitted Data

Gaussian Fitted Data

Measured Data

-4000

-2000

0

Position [µm]

2000

100

80

Signal shape and beam width

SiPM signal with metalens

measured beam width

Metalens efficiency measurements

CPAD 2019

A.A. Loya Villalpando

normal incidence efficiency

- 10 mm diameter beam, variable aperture power detector
- measure transmitted power as a function of distance from the metalens

angular efficiency

- 2 mm diameter beam centered on metalens, 10 mm aperture power detector fixed at 5mm from metalens
- measure transmitted power as a function of metalens rotation angle

Linear efficiency results

• consequence of combined foci contributions

A.A. Loya Villalpando

Angular efficiency results

A.A. Loya Villalpando

Signal increase

- signal multiplication factor = signal with metalens divided by signal without metalens
- signal increase improves with decreasing SiPM area
 - increased area coverage (metalens area/ SiPM area)

6-7X signal increase for smallest SiPM!

Conclusions and outlook

Conclusions

- Increasing light collection would benefit several experiments
- Metalenses are a practical and cost-effective solution
- Metalenses are most effective when coupled with SiPMs of small active area, providing an increase of 6-7X in light collection at ~630 nm
 - similar expected at ~430 nm

Outlook

- Detector optimization/ implementation
 - size/shape of metalenses
 - location and spacing of metalenses and SiPMs
 - saturation effects
 - low temperature performance
- Design and fabrication of metalenses
 - VUV (currently down to ~260 nm, wavelength shifting substrate, other nanomaterials)
 - converging foci to maximize light collection

A.A. Loya Villalpando

CPAD 2019

Bonus Material

A.A. Loya Villalpando

CPAD 2019

Metalens Equations

$$arphi_{n\!f}(x,y)=rac{2\pi}{\lambda_d}\Big(f-\sqrt{x^2+y^2+f^2}\Big)$$

$$\frac{d\phi}{dr} = \frac{N}{p} = \frac{2\pi}{\lambda_d}\sin\theta_N$$

 $\Phi = \phi$ = phase profile

 θ_{N} = deflection angle of N order

$$f = focal point N; N = 1,2,3,...$$

 λ_{d} = design wavelength

p = local periodicity on metalens

Further details: Yu et al., Science 334, 333 (2011)

A.A. Loya Villalpando

CPAD 2019

bonus

Local periodicity of metalens

A.A. Loya Villalpando

CPAD 2019

bonus

SEM image of nanofins with 11um periodicity

Image: Yu et al., Science 334, 333 (2011)

A.A. Loya Villalpando

CPAD 2019

Metalens vs ordinary lenses

Image: Laptop Media

Image: roadtovr.com

A.A. Loya Villalpando

CPAD 2019

bonus

Projected beam ellipticity

A.A. Loya Villalpando

CPAD 2019

bonus

Signal increase dividing all signals with metalens by signal without metalens at metalens location

Light focused by metalenses

0th order (~ 20% eff) 1st order (~ 38% eff) 2nd order (~ 15% eff) 3rd order (~ 5% eff) *

incident light

* efficiency and location of foci by design - adjustable

metalens

A.A. Loya Villalpando

CPAD 2019

bonus