Fermilab Dus. Department of Science

Skipper CCDs for Cosmological Applications

Alex Drlica-Wagner CPAD Instrumentation Frontiers Workshop December 8, 2019

Small-Scale Structure and Dark Matter Microphysics

Skipper CCDs for Cosmology

- Modern astronomical observations can control...
 - Where the telescope is pointing (the object you are looking at)
 - Wavelength of light (energy of photons you collect)
 - Exposure time (how many photons you collect)
 - Detector binning (trade resolution for readout time/readout noise)
- Modern astronomical observations are limited in...
 - Sometimes you are photon starved (can't integrate any longer)
 - Sometimes exposure time is limited (instrument stability, cosmic ray pile-up, etc.)
 - Sometimes you can't sacrifice resolution (don't want to bin)
 - Sometimes you are looking at many different sources at once
- The Skipper CCD for Cosmology pitch...
 - Skipper CCDs allow you to control readout noise directly on a pixel-by-pixel basis
 - Configurable per object and per exposure
 - Every CCD used for astronomical observations should be a Skipper CCD

Readout Noise and Cosmology

- Skipper CCDs provide dynamic, configurable control over readout noise.
- Readout noise is important in regime of small signal and small background
 - Multiplexed spectroscopy of faint objects (observing many objects at the same time)
 - High resolution spectroscopy (signal is a line while background is continuum)
 - Space-based spectroscopy (significantly reduced background)

Cosmological applications

- Small scale structure of dark matter (fuzzy dark matter, warm dark matter, self-interacting dark matter)
- Faint emission line galaxies (dark energy, large-scale structure, etc.)
- Things I haven't thought of... come talk to me!

CCD Readout

Lowering Readout Noise: Skipper CCDs

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N} \Sigma_i^N$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

🛟 Fermilab

🛟 Fermilab

Things to note about Skipper CCD

- skipper
- The only change is to the readout structure
 - Otherwise performs like the standard CCDs we have grown to know and love
- If you don't want to skip, you don't have to
 - A Skipper CCD read with one sample *is* a standard CCD
- Skipping takes time (linear in the number of samples)
 There is an optimum between readout time and exposure time
- Skipping is fully configurable on the pixel-by-pixel level
 We can choose the readout noise in each pixel

Counting electrons (0e⁻, 1e⁻, 2e⁻, ..., 40e⁻, 41e⁻, 42e⁻, ...)

Fermilab

Counting electrons (0e⁻, 1e⁻, 2e⁻..., 1581e⁻, 1582e⁻, 1583e⁻, ...)

Direct measurement of Linear Gain

‡ Fermilab

Faster Readout Strategies

skipper

- Reduce single sample noise
 - Current Skippers at ~3.5 e⁻ rms/pix (DESI is ~2 e⁻ rms/pix)
- Targeted readout:
 - Only readout the pixels that you need (Smart Skippers)
- Multiplexed readout
 - Ideas for multiplexed sense nodes
- More amplifiers
 - DECam = 2 channels; LSST = 16 channels; R&D = 256 channels
- Frame Shifting
 - Shift charge so readout can be done in parallel with next exposure

IMACS Spectra

IMACS Spectra

Faster Readout: Smart Skippers

Faster Readout: Multiplexed Readout

Faster Readout: More Amplifiers

DECam (2 channels)

Plazas et al. (2014)

LSST (16 channels)

Park et al. (2017)

1kFSCCD (192 channels)

Weizeorick et al. (2012)

Faster Readout: Frame Shifting

Doering et al. (2012)

Faster Readout: Frame Shifting

Doering et al. (2012)

Summary: Skipper CCDs for Cosmology

- The Skipper CCD pitch...
 - Skipper CCDs allow you to control readout noise directly on a pixel-by-pixel basis
 - Configurable per object and per exposure
 - Every CCD used for astronomical observations should be a Skipper CCD
- Readout time is the major challenge facing Skipper CCDs for cosmology
- Several ideas being explored for reducing readout time
 - Reduce single-sample noise
 - Smart Skippers
 - Multiplexed Skipper sampling
 - More output channels
 - Frame shifting

Skipper CCD Characteristics

- We have been using Skipper CCDs from the same fabrication batch as used for the results in <u>Tiffenberg et al. 2017 (1706.00028)</u>.
- They are p-channel devices fabricated on high-resistivity (~10 k Ω cm) n-type silicon that was fully depleted at a substrate voltage of 40 V.
- Our detectors are smaller format than the one used in the 2017 paper.
- More characteristics of the devices can be found below:
 - Format: 1248 pix x 724 pix
 - Pixel Scale: 15 um
 - Thickness: 200 um
 - Operating Temperature: 140 K
 - Number of Amplifiers: 4

Installation in astronomical dewar from IR Labs

