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LOVELY SNOWBALL, | THEN WITM FREEZING | FLY STRAGHT AND TRUE, T ONLY THRON |

PACKED WITH CARE, ICE TO SPARE, HIT HARD AND SQUARE ! CONSECRATED
SMACK A HEAD THAT'S MELT AND SOAK THROUGH | THIS, OH SNOWRBALL, SNOWRALLS.

UNAWARE / 1S MY PRAYER.
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® Liquid is cooled below its normal
freezing point

+ Metastable

+ High purity and clean, smooth container

® Freezing: when liquid finds a nucleation
site, or is“disturbed”

+ Cannot stop nucleation: it snowballs
+ Highly exothermic!

® Smaller samples are easier to cool
+ Minimum T depends on radius of sample

® Unexplored phase transition in physics!
+ Cloud & bubble chambers both done

® New technology!

+ Multiple applications, although in this
talk | will focus on the search for low-
mass dark matter
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Motivation

® |ack of discovery of dark matter in the
range ~10-1000 GeV/c? mass

+ Motivates looking elsewhere

THIS 16 WHERE YOU
LOST YOUR WALLET?

- el - ® What better target for lower-energy recoils,
| than the lightest possible target element,
hydrogen!?
+ Hydrogen bubble chamber would be great,

0 but the safety...
.%izj + Other ideas exist already, so far from only
RN game in town, even at ~| GeV
o]
:gjgjjj ® Water is inexpensive and relatively easy to
> " purify even on large scales (SNO, SuperK)

ol while great at moderating n’s

+ Cheap and scalable particle detection
technology in the past already

Carmen Carmona 5



Challenges Using Supercooled Water

® Getting as cold as feasible, without unwanted nucleation as a background

+ It's like a bubble chamber except in reverse:
colder should be better —— lower energy threshold

+ Must avoid both particulates (heterogeneous nucleation) and homogenous
nucleation

® Finding the ideal rate of cooling
+ Too slow means low live-time and/or more opportunity for an unwanted nucleation
+ But too fast means thermal lag/gradient, which encourages nucleation

® The scientific method in its purest form:“let’s try it and see” approach

+ Testability, reproducibility, control, bias mitigation, and statistical significance all
involved.

+ Hypothesis: radiation, specifically neutrons, freezes supercooled water
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® 20 g (20 mlL) of purified water contained
in 2 smooth, cleaned fused quartz vessel

+ Water processed through multiple
filters, deionized, and ultimately distilled
through a 20-nm flat-sheet non-linear
membrane

1308 i
/T e

Thermocouple thermometers (averaged)
Borescope camera for image acquisition
Coincident counter under vessel

-20 °C achieved (maximum cooling rate
of -2°C per minute)

® Multiple run conditions / calibrations

temperature (°C)

Control (no radioactive source)
200 n/s AmBe (with, w/o lead shielding)

|0 uCi 137Cs gamma-ray source
3,000 n/s 252Cf (with Pb shielding)

+ 4+ 4+ 4
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First Quantitative Results

Time water spends supercooled
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® Reduction in supercooled time in
presence of neutron sources

+ Effect enhanced with lead shielding
+ Bigger effect with stronger source

® No statistically significant effect so far
from gammas (662 keV energy)

+ May be a sign of e- recoil rejection

® We conclude that neutrons can freeze
water (first observation)

+ Alternated the source and BG runs
+ Checked room temp as systematic

M. Szydagis et al. arXiv:1807.09253



Preliminary Image Analysis

mirror, can differentiate wall/surface

> e ® Even without a second camera or
_ O O Double
Single
events

bt
+ Most common, especially in
control results

e Still far from perfect by eye

+ So, focus only on counting

22.

) blind analysis
| performed,  ® More multiple scatters by a lot in

| employing
1 large team of heutron data

| undergraduate + Confirmation neutrons can cause
: students Ili .
| scanning crystallization

percentage of events
with multiple nucleation sites

| photographs + Even triples, quad seen!

CONTROL NEUTRON GAMMA
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® This is optimistic case:
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® Thresholds as low as ~30 10-45
meV should be possible,
10—46L

and way more than | kg- 0.1 05 1 5 0
Dark Matter Mass [GeV/c?]
year

Fraction of the cost (and complications) of competing
experiments at 100 MeV to 10 GeV! Potentially self-confirming
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How to make that all

= . o= AP S S . 52l 2T < \E 52l

possible

® Sub-keV threshold possible, even sub-eV

® Around ~240 K or -30 °C there appears to be a “sweet spot” of low threshold, to be
sensitive to proton recoil but not too sensitive to gammas and spontaneous nucleation.
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V.I. Khvorostyanov, J. A. Curry, Journal of Atmospheric Sciences 61, 2676 (2004)
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® More cameras (higher FPS)/mirror for 3-D
reconstruction

+ Including event type; show directionality?

® | ower threshold with lower T, hydrophobicity

+ Volume optimization, of water, and
environment

® Full Geant4 sim,for n and Y rates and #
vertices

+ Molecular dynamics in more distant future

® Exhaustive characterization of energy
threshold

+ Possibly P too not just T, and more source

types
® Hardest: secure some $$, start global
program
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® |ncrease the live-time (the main current
drawback, as it is too low)

+ Modular detector
+ Supercooled droplet detector (ScDD)
+ Extreme heat, lasers, microwaves, agitation

® Cryogenic system and snowball detector
being built at Penn State, with a focus on
heating and cooling R&D

+ Establishing a stable operational
temperature at a set point

+ Rapid heating of snow after a trigger

+ Rapid re-cooling of the water after a
complete melting

® Studies of detector sensitivity, and discovery
potentials for different dark matter models
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Conclusions

® SnowBall Chamber: New technology!

+ Among other things, it can be used to search for low-mass Dark
Matter!

® Neutrons can make supercooled water freeze: a new discovery!
+ They can do multiple scatters, as they do in a bubble chamber
® There is at least some degree of electron recoil discrimination

® Energy threshold is not known, but likely sub-keV already at -20°C
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Thank you!

People who say it cannot be done
should not interrupt those who are
doing it.

- (}emge Bernard Shaw —

AZ QUOTES
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Backup Slides
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Experlmental backgrounds

Nuclear Recoil
® Neutrons

+ Removed cutting multiple scatters

® Alphas:

+ Near walls: removed by good fiducialization.

4+ -n acoustic discrimination?

® Gammas and electrons:
+ Not a problem in SnowBall chamber!

® Muons:
+ Go deep underground
+ Tag them with a muon veto
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But wait, there is more!

® Spin-dependent proton sensitivity
® Dark photons and axions through electron scattering

Sl SD-proton
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Besides Dark Matter, There is:

nuclear :
security B nuclear

= & Wl astrophysics

. coherent neutrino scattering?
eling
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1CS

More p
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Double Crystal Slide Show
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Coincidence Counter Analysis

® A huge peak above accidental
coincidence probability

+ Done with images

c
o
+ Checked with temperatures g |7 Gonl ,
8 045 [ |~ Pb-shielded AmBe | |/
'g "% [ | — 187Cs green
® But only in UNshielded AmBe B

data 0.1 ¢

® Still puzzling

® May be gammas (higher energy ¥ By E— 02 ad
than Cs) or MeV n’s
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Electron Microscope Images of a Membrane Filter (Novamen)
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| HV | WD | iﬁ'lag | dwell 'spot': Lens Mode | pressure
5.00kV |84 mm | 15000x| 24 ps| 2.5 | Field-Free |0.447 Torr

photos courtesy of Prof. Kathy Dunn, SUNY Poly CNSE

| WD mag | dwell |spot|Lens Mode | pressure | ——1 ym —
15 5.00 kV | 8.4 mm | 50 000 x| 24 ps | 2.5 | Field-Free | 0.447 Torr
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