CMOS Sensor for the Cold and Tiny

Yuan Mei

Lawrence Berkeley National Laboratory

TPC is wonderful

Signal extraction remains a challenge

Schematic of the Time Projection Chamber. Magnetic and drift electric fields are parallel to the cylinder axis and beam direction. Not all the readout-plane wires are shown. Figure 4

Physics Today 31(10), 46 (1978)

TPC signal extraction

XENON, LUX, LZ, etc.

- Liquid Xenon TPC
- Time Projection Chamber
- Wire and/or light readout
- mm~cm spatial resolution

- µ-PIC (Micro Pixel Chamber)
- Printed Circuit Board technology
- 400µm pitch
- Some electron gain in gas
- Difficult for readout and scale-up

recoil

- S.E. Vahsen et al. http://arxiv.org/abs/1110.3401
- D³, InGrid etc.
- Charge multiplication stage
- Non-specific ASIC readout
 - FE-I3/-I4
 - TimePix

Readout?

$\mathsf{GEM} \Rightarrow \mathsf{FEC} \Rightarrow \mathsf{MPD} \Rightarrow \mathsf{DAQ}$

Avalanche gain?

- MicroMegas
- Micromesh placed (very) close to readout PCB

• GEM

- Array of micro-holes in thin foils with conductor cladding on both sides
- µ-PIC (Micro Pixel Chamber)
- Printed Circuit Board technology

- Catch charge as early as possible, convert to digital information immediately
- Low noise
- Full 3D information
 - Truly (massively) pixelated (2D)
 - Adequate timing (waveform digitization)
- Affordable

Topmetal CMOS direct charge sensor

Topmetal-I

Topmetal-II-

- Direct voltage readout
- High analog bandwidth

- Charge sensitive amplifier, <15e- noise
- Clock-less, frame-less logic hits readout

Topmetal-II- seeing alpha (ion) tracks in air

Electron-track Compton Imaging

http://www-cr.scphys.kyoto-u.ac.jp/research/MeV-gamma/wiki/wiki.cgi?page=Top_en

Ne(90%)+DME(10%) @ 80kPa, 55Fe events (5.9keV X-ray), GEM on Topmetal-II-

 2.5×2.5 mm field of view

CMOS charge sensor array for $0\nu\beta\beta$

10

Sensor array

Topmetal-S 1mm version x19 array data

File Edit View Search Terminal Help
2.26587416], [1.80284429, 1.80284429, 1.80284429, 2.70142215]]), -9.686654418546992) AutoTune: best ret: -12.6472829345 [1.67078831 58749256716806, 1.2249482828802523, 1.02967832
Set volts: [1.6707883198356632, 0.85809588208 82828802523, 1.029678328315217, 2.554232313962 Set volt codes: [37531, 18885, 29388, 27302, AutoTune: run time: 2:00:47.976484, fun called
AutoTune: called: 3060 Set volts: [1.6707883198356632, 0.85809588208 82828802523, 1.029678328315217, 2.554232313962 Set volt codes: [37531, 18885, 29388, 27302,
Updating chain 1 with sensors [8, 2, 3, 12] Send : 0x22222282b929b49c572cc6aa65926e1c8 Return: 0x2222282b4a6eab917caea0a461a1c469 eq Send : 0x2222282b59c7801a6b757ffe9045d928
Return: 0x2222282b59c7801a6b757ffe9045d928 eq Send : 0x2222282b6394835664e3573281b0d928 Return: 0x2222282b6394835664e3573281b0d928 eq Send : 0x2222282b604583fb5eb263538c7dd928
You pressed alt

	ropinetat-5	Lmm	version	п хтэ а	rray i i	uner -		^
			0.7					
		• 8		18				
	<u> </u>		01		0 17			
		○ 2		0.6				
	O 10		0 0		O 16			
		С З		0.5				
	\odot 11		0.4		0 15			
		○ 12		0.14				
			0 13					
Name	Set Voltage	[V]	Set	Volt DA	C code	Measured	Voltage	[\]
Name BIASN	Set Voltage 1.670788	[V]	Set	Volt DA 3753:	C code 1 ‡	Measured	Voltage	[V]
Name BIASN BIASP	Set Voltage 1.670788 0.8580956		Set	Volt DA 3753: 1888:	C code 1 € 5 €	Measured	Voltage 0.000 0.000	[∨]
Name BIASN BIASP 'CASN	Set Voltage 1.6707883 0.8580954 1.315874		Set	Volt DA 3753: 1888: 2938:	C code	Measured	Voltage 0.000 0.000 0.000	[v]
Name BIASN BIASP 'CASN 'CASP	Set Voltage 1.6707883 0.8580956 1.315874 1.224948		Set	Volt DA 3753: 1888: 2938: 2730:	C code 1 4 5 4 8 4 2 4	Measured	Voltage 0.000 0.000 0.000 0.000	[v]
Name BIASN BIASP 'CASN 'CASP VDIS	Set Voltage 1.670788: 0.858095 1.315874 1.224948 1.029678:		Set	Volt DA 3753: 1888; 2938; 2730; 2282;	C code 1 • 5 • 8 • 2 • 2 •	Measured	Voltage 0.000 0.000 0.000 0.000 0.000	[v]
Name BIASN BIASP ICASN ICASP VDIS VREF	Set Voltage 1.670788: 0.858095i 1.315874 1.224948 1.029678: 2.554232		Set	Volt DA 3753: 1888: 2938: 2730: 2282: 5780(C code 1 • 5 • 8 • 2 • 2 • 0 •	Measured	Voltage 0.000 0.000 0.000 0.000 0.000 0.000	[v]
Name BIASN BIASP /CASN /CASP /CASP /VDIS /REF	Set Voltage 1.670788: 0.858095/ 1.315874 1.224948 1.029678: 2.554232		Set	Volt DA 3753: 1888: 2938: 2730: 2282: 5780: e	C code 1 4 5 4 8 4 2 4 2 4 2 4 2 4 0 4	Measured	Voltage 0.000 0.000 0.000 0.000 0.000	[1]
Name BIASN BIASP ICASN ICASP VDIS VREF	Set Voltage 1.670788: 0.858095 1.315874 1.224948 1.029678: 2.554232	[∨] AP AP AP AP AP AP AP	Set	Volt DA 3753: 1888: 2938: 2730: 2282: 57800 e	C code 1 5 5 8 7 2 2 2 2 2 2 2 2 2 2	Measured	Voltage 0.000 0.000 0.000 0.000 0.000 0.000	[v]

Re-sample

Refresh

CMOS works in the cold

State-of-the-art cold electronics

77K – LArPix, Q-Pix etc.

|| | BERKELEY LAB

CMOS @ <4K

Conventional CMOS designed to work at <4K temperature. Low-noise Transimpedance Amplifier (TIA) replaces SQUID

55nm CMOS devices proven to function down to ~I0mK

15

NMOS1 10~20mK NMOS1 60.8K NMOS1 298K

Interfacing quantum sensors

NTD in CUORE

TES in CUPID

5

Stay Tuned!

Contact Yuan Mei <<u>ymei@lbl.gov</u>>