HeRALD: Dark Matter Direct Detection with Superfluid 4He

Doug Pinckney on behalf of the HeRALD collaboration 10 December 2019

Phys. Rev. D 100, 092007

UMassAmherst

Low Mass Dark Matter Direct Detection

- DM]

• Parameter space "wide open", O(10 g-day) exposures set leading limits

• This space is challenging to access: for a given target mass, lower DM mass requires lower detector threshold [O(10 eV) threshold for O(100 MeV)

HeRALD: Helium Roton Apparatus for Light Dark matter

- Superfluid 4He as a target material
 - Favorable recoil kinematics lacksquare
 - Recoil energy can be fully reconstructed with TES calorimetry from M. Pyle at UCB (top right taken from LBL RPM) presentation)
 - Zero bulk radiogenic backgrounds
 - No Compton backgrounds below 20 eV \bullet
- HERON experiment at Brown (Seidel, Maris), proof of concept work

Detection Method

Absorbed in calorimeters on 10 ns timescale

Detection Method

Absorbed in calorimeters on 10 ns timescale

Ballistic, travel at
 O(1 m/s), deposit energy in immersed calorimeters

Detection Method

Absorbed in calorimeters on 10 ns timescale

Ballistic, travel at
 O(1 m/s), deposit energy in immersed calorimeters

Adsorption of quantum evaporated He atoms on upper calorimeter + adsorption gain, 10-100 ms timescale

- Nuclear and electron recoils have different energy partitioning!
- Distinguishable with signal timing

Energy Partitioning

Estimated from measured excitation/ionization/elastic scattering cross sections

8

Sensitivity Projections

- Solid red curve, 1 kg-day @ 40 eV threshold
 - 3.5 eV (sigma) calorimeter resolution demonstrated by Pyle at UCB
 - 9x "adhesion gain"
 - 5% quasiparticle detection efficiency

Spin Independent DM-Nucleon Cross Section [cm²] 10^{-}

Activities at Berkeley (Slides from Junsong Lin)

Measure nuclear recoil (NR) scintillation light yield of superfluid helium

- 6 one-inch PMTs monitoring one-inch cube of LHe.
- PMTs submerged in LHe
 - Proximity leads to better light collection
- Biased by Cockcroft-Walton (C-W) generators
- TPB as wavelength shifter (LHe scintillation λ = 80 nm)
- Demonstrated single PE sensitivity at T=1.75 K
- Using Compton scattering to determine ER light signal yield
- Next step: DD generator for NR light yield

Activities at Berkeley (Slides from Junsong Lin)

- Estimate ER light signal yield from Compton scattering peaks
- ~0.4 PE/keV_{ee} (using 3 of 6 PMTs)

Calibration via 24keV neutrons: Photoneutron

- Coincidence at 24 keV:
 - Energy of convenient photoneutron source (124SbBe)
 - Energy of 'notch' in cross section of Fe (~25 m) interaction length)
 - Result: can surround a photoneutron source in material opaque to gammas but transparent to 24 keV neutrons
- Endpoint in He: 14 keV
- 1 GBq 124 Sb source (practical) results in a few n/s \bullet collimated neutrons

HDPE

Calibration via 24keV neutrons: Pulsed

Also looking into pulsed source based on filtered DT neutron generator

- Characterizing dilution refrigerator
- Uncertainty in how quasiparticles, triplet excitations interact at surfaces
- Achieve and enhance adhesion gain: keep calorimeter dry, use materials with higher Van der Waals attraction
 - Adapting the HERON film burner design, demonstrated but heat load problematic

Activity at UMass

Heat Load Free Film Stopping

- Cesium coated surfaces, demonstrated but technically difficult [Nacher and Dupont-Roc, PRL 67, 2966 (1991)] [Rutledge and Taborek, PRL 69, 937 (1992)]
- Geometry of atomically sharp "knife edges", used by x-ray satellites at higher temperatures, has yet to be conclusively demonstrated [Y. Ezoe et al J. Astron. Telesc. Instrum. Syst. 4(1) 011203 (27 October 2017)]

Anisotropically Etched Si

Alternate Method: Nitride Overhang

 11/19/2019
 dwell
 HV
 HFW
 mag ⊞
 curr

 8:19:09 AM
 100 ns
 2.00 kV
 4.28 μm
 34 876 x
 3.1 pA

Phys. Rev. D 100, 092007 Next Steps

He Film Stopping

keV-scale Neutron Calibration

Both

Dilution Refrigerator Characterization

Scintillation Yield Measurements

Extras

Background Simulations

Radon surface backgrounds not yet considered

Scintillation Yield Measurement Details

- PMTs and biasing system previously demonstrated to work at ~15 mK temperature vacuum in an earlier project by Junsong & co.
- resistor circuit needed.
- cryogenic feedthrough

• PMTs are Hamamatsu R8520-06-MOD (platinum underlay for cryogenic usage)

 Cockcroft-Walton (CW) generator directly generates the different individual voltages needed by different dynode stages of the PMT. So no voltage-divider

• Only a few volts AC needed from room temperature, no need for high-voltage

More Scintillation Yield Measurement Details

- For Compton scattering, we used a 2" diameter by 2" height Nal detector as far side detector to determine the recoil angle.
- For DD generator, we will use a 5" diameter by 5" height BC-501A liquid scintillator detector as far side to determine the recoil angle.
- For both cases, coincidence is used to select true events.
- Currently, I only understand the single PE area from 3 of the 6 PMTs well to sum up their area

Helium Compton Scattering

From Scott Hertel

quasiparticle

Film Burner Model

Experimental film stoppage area

Detected State

Vibrations (phonons, rotons)

Singlet UV Photons

Triplet Kinetic Excitations

(IR Photons)

Sensitivity Projections Cont.

Curve	Exposure	Threshold
Solid Red	1 kg-day	40 eV
Dashed Red	1 kg-yr	10 eV
Dotted Red	10 kg-yr	0.1 eV
Dashed-Dotted Red	100 kg-yr	1 meV
Dashed- Dotted-Dotted Red	100 kg-yr	1 meV + 0

off shell phonon sensitivity

Extending Sensitivity with Off Shell Interactions

- The 0.6 meV evaporation threshold limits nuclear recoil DM search to m_{DM} >~ 1 MeV
- Can be avoided if we find an excitation with an effective mass closer to the DM mass, allow DM to deposit more energy in the detector
 - In helium this could be recoiling off the bulk fluid and creating off shell quasiparticles

Detecting Vibrations: Vibrations in Helium

- The vibrational ("quasiparticle", "QP") excitations we expect to see are phonons and rotons
- Velocity is slope of dispersion relation
- Rotons ~ "high momentum phonons"
 - Just another part of the same dispersion relation
 - R- propagates in opposite direction to momentum vector

Example Waveform

- Based on HERON R&D \bullet
 - Can distinguish scintillation and evaporation based on timing

J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000) Annotations from Vetri Velan

Another Example Waveform

- Distinguish between different phonon distributions by arrival time in detector \bullet
 - R+ arrive first
 - P travel at a mix of slower speeds and arrive next \bullet
 - R- can't evaporate directly, need reflection on bottom to convert into R+ or P

FIG. 3. Several fundamental characteristics of superfluid ⁴He quasiparticles are here illustrated. TOP: the dispersion relation. MIDDLE: the group velocity. BOTTOM: transmission probabilities at normal incidence in two cases, incident on a ⁴He-solid interface with solid phonon outgoing state (red dashed) and incident on a ⁴He-vacuum interface with outgoing state a ⁴He atom (blue solid). At both high and low momentum quasiparticles are of finite lifetime, and unlikely to reach an interface before decay.

