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Low Mass Dark Matter Direct Detection
• Parameter space “wide open”, O(10 g-day) exposures set leading limits


• This space is challenging to access: for a given target mass, lower DM 
mass requires lower detector threshold [O(10 eV) threshold for O(100 MeV) 
DM]
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HeRALD: Helium Roton Apparatus for Light Dark matter

• Superfluid 4He as a target material


• Favorable recoil kinematics


• Recoil energy can be fully reconstructed with TES calorimetry 
from M. Pyle at UCB (top right taken from LBL RPM 
presentation)


• Zero bulk radiogenic backgrounds


• No Compton backgrounds below 20 eV


• HERON experiment at Brown (Seidel, Maris), proof 
of concept work
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Excitations in Superfluid 4He

4

He

DM

Excitation

~meV Vibrations 
 (phonons, rotons)

Singlet UV (16 eV)  
Photons

Triplet Kinetic 
 Excitations

O(ns)



Excitations in Superfluid 4He
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Excitations in Superfluid 4He
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Excitations in Superfluid 4He
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Energy Partitioning
• Nuclear and electron recoils have different energy partitioning! 

• Estimated from measured excitation/ionization/elastic scattering cross sections


• Distinguishable with signal timing
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Sensitivity Projections
• Solid red curve, 1 kg-day 

@ 40 eV threshold


- 3.5 eV (sigma) 
calorimeter resolution 
demonstrated by Pyle at 
UCB


- 9x “adhesion gain”


- 5% quasiparticle 
detection efficiency
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Activities at Berkeley (Slides from Junsong Lin)
Measure nuclear recoil (NR) scintillation light yield of superfluid 
helium


• 6 one-inch PMTs monitoring one-inch cube of LHe. 

• PMTs submerged in LHe 

◦ Proximity leads to better light collection 

• Biased by Cockcroft-Walton (C-W) generators 

• TPB as wavelength shifter (LHe scintillation  = 80 nm) 

• Demonstrated single PE sensitivity at T=1.75 K 

• Using Compton scattering to determine ER light signal yield 

• Next step: DD generator for NR light yield

λ
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Activities at Berkeley 
(Slides from Junsong Lin)

• Estimate ER light signal yield 
from Compton scattering peaks


• ~0.4 PE/keVee (using 3 of 6 
PMTs)
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Calibration via 24keV neutrons: Photoneutron

• Coincidence at 24 keV:


• Energy of convenient photoneutron source (124SbBe)


• Energy of ‘notch’ in cross section of Fe (~25 m 
interaction length)


• Result: can surround a photoneutron source in 
material opaque to gammas but transparent to 24 keV 
neutrons


• Endpoint in He: 14 keV


• 1 GBq 124 Sb source (practical) results in a few n/s 
collimated neutrons
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Calibration via 24keV neutrons: Pulsed
• Also looking into pulsed source based on filtered DT neutron generator

13

Pb

Collimate 
neutrons

Block 
gammas

Filter out the 24 
keV neutrons 
using Fe-56

moderate MeV-scale 
neutrons to <100 keV

 neutron booster, get 
neutrons with energy 
of ~1 MeV using Pb n-

>2n process

DT 
Generator 
(14.1 MeV, 
1us timing)

Borated PolyFeAl + AlF3 
(Fluental)PbDT

40
 c

m Neutrons
Gammas



Activity at UMass
• Characterizing dilution refrigerator


• Uncertainty in how quasiparticles, triplet 
excitations interact at surfaces


• Achieve and enhance adhesion gain: keep 
calorimeter dry, use materials with higher Van 
der Waals attraction


• Adapting the HERON film burner design, 
demonstrated but heat load problematic
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Heat Load Free Film Stopping
• Cesium coated surfaces, 

demonstrated but technically 
difficult [Nacher and Dupont-Roc, PRL 67, 
2966 (1991)] [Rutledge and Taborek, PRL 69, 937 
(1992)]


• Geometry of atomically sharp 
“knife edges”, used by x-ray 
satellites at higher 
temperatures, has yet to be 
conclusively demonstrated [Y. 
Ezoe et al J. Astron. Telesc. Instrum. Syst. 4(1) 
011203 (27 October 2017)]
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Next Steps

Data taking 
with optimized 

designs

UMass He Film Stopping
Adhesion Gain

Quasiparticle Reflection

Both
keV-scale Neutron Calibration

Dilution Refrigerator 
Characterization

Berkeley
Scintillation Yield Measurements

Calorimetry Testing
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Extras
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Background Simulations
• Radon surface backgrounds not yet considered
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• PMTs are Hamamatsu R8520-06-MOD (platinum underlay for cryogenic usage) 

• PMTs and biasing system previously demonstrated to work at ~15 mK 
temperature vacuum in an earlier project by Junsong & co. 

• Cockcroft-Walton (CW) generator directly generates the different individual 
voltages needed by different dynode stages of the PMT. So no voltage-divider 
resistor circuit needed. 

• Only a few volts AC needed from room temperature, no need for high-voltage 
cryogenic feedthrough

Scintillation Yield Measurement Details
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• For Compton scattering, we used a 2” diameter by 2” height NaI detector as 
far side detector to determine the recoil angle.


• For DD generator, we will use a 5” diameter by 5” height BC-501A liquid 
scintillator detector as far side to determine the recoil angle.


• For both cases, coincidence is used to select true events.


• Currently, I only understand the single PE area from 3 of the 6 PMTs well to 
sum up their area

More Scintillation Yield Measurement Details
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Helium Compton Scattering
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From Scott Hertel



23

Evaporator 
Surface

Condenser 
Surface

Condenser 
Surface

Experimental film stoppage 
area

Film Burner Model



Excitations in Superfluid 4He
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Sensitivity Projections Cont.
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Extending Sensitivity with Off Shell Interactions

• The 0.6 meV evaporation threshold limits 
nuclear recoil DM search to mDM >~ 1 MeV


• Can be avoided if we find an excitation 
with an effective mass closer to the DM 
mass, allow DM to deposit more energy in 
the detector


• In helium this could be recoiling off the 
bulk fluid and creating off shell 
quasiparticles

26



Detecting Vibrations: Vibrations in Helium
• The vibrational (“quasiparticle”, “QP”) 

excitations we expect to see are phonons 
and rotons


• Velocity is slope of dispersion relation


• Rotons ~ “high momentum phonons”


• Just another part of the same 
dispersion relation


• R- propagates in opposite direction to 
momentum vector
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Example Waveform
• Based on HERON R&D


• Can distinguish scintillation and 
evaporation based on timing
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Another Example Waveform
• Distinguish between different phonon distributions by arrival time in detector


• R+ arrive first


• P travel at a mix of slower speeds and arrive next


• R- can’t evaporate directly, need reflection on bottom to convert into R+ or P

29

 

p0

p1

p2

Recent Quasiparticle Simulation

R+    P    R-



30



31


