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Photosensor options for BaF, readout

 BaF, has long been identified as an excellent
choice for a Mu2e (ll) calorimeter, provided that
one has a way of utilizing the 220 nm fast
component without undue interference from
the 320 nm slow component
» There are actually two fast components
(r< 1 ns)at 195 and 220 nm and two
slow components (7= 630 ns) at 320 and 400 nm
* Viable approaches:
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« Directly suppress the slow scintillation component

» Interpose an external filter

» Use a photosensor that is sensitive only to the fast component
* Suppression of the BaF, slow component by Y doping, as developed
by Zhu et al., is a major advance, although quite a bit of R&D remains
* Is the resulting fast-to-slow component amplitude ratio already
sufficient to meet the rate and time resolution requirements of Mu2e-I1?
» If the consensus is “Yes”, | can perhaps conclude my presentation here
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Photosensor options for Y-doped BaF,

* | believe we still lack an ideal photosensor for the rates of Mu2e-I|
« What is required of an appropriate photosensor?
« Spectral sensitivity in the 200 nm region for best energy and time
resolution
» Fast/slow component discrimination for high rate capability
» Improved rise/fall time characteristics to fully capitalize on
the fast component native time resolution and rate capability
« Radiation hardness (photons/neutrons)
« Photosensor candidates
« Large area SiPMs developed for the MEG upgrade, DUNE, ...
having ~25% PDE at 220nm (these already exist — e.g., Hamamatsu, FBK,,)
« Large area delta-doped APDs with an integrated filter, having 50% PDE at
220nm and strong suppression at 320nm developed at Caltech/JPL/RMD
* These have larger dark current and more noise than standard RMD
devices, but can be run at reduced temperatures
» Large area SiPMs with an integrated filter and potentially improved time
response are currently under development at Caltech/JPL/FBK
@) « Affordable MCPs, i.e., LAPPDs
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Hamamatsu VUV MPPC

S13370 series
- High PDE in VUV wavelength range
« No slow/fast component discrimination
« Low optical crosstalk through trench structure
- Typical decay time of a large area device,

dictated by RC
* 4@ 6x6mm
» Work at cryogenic temperatures
$13370-3050CN PDE (Vover = 4V) SPICE simulation at LAr temperature (87K)
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PMT + external filter

 The TAPS experiment at ELSA at Mainz (no B field) has for many
years had a BaF, forward calorimeter, reading out both ‘
fast and slow components with HR2059-01 PMTs
» They use an integration time of 2us; they are thus
limited to a single crystal rate of ~100kHz
* An upgrade must cope with increased rates, so they
eliminate the slow component using a bandpass filter centered

at 214 nm with a transmission at A, ., that varies from 36 to 42% *
» Elimination of the slow component allows a gate of 20ns, 3]
with a resulting single crystal rate capability up to ~2 MHz

(3]
(S =1
1 1

R
~
5 2
v (0]
°] A 0 @ 201
-20: °T -10 | (—— R g 154
. 40 - ] 10 %10
= ) ;0 S 20 ] = i ,__': . P\
—_— | AL - - © ,.f,:
O g0 2 ] no filter o S . :
k=l E =y 8 with filter 0 e
2 400 '?;1'“"’ = ™7 2 : 160 160 200 220 240 260 260 300
o L Q. 50 £ wavelength /nm
, ] & 50 g
% 1201 ::: . ‘ Izoclam‘la'd g 60 zoomed
-140 4 40 0 o2 w4 s 60 ] o T P = = .
] time ins 70 time /ns S. Diehl, R.W. Novotny,
-160 - . -
0 500 1000 1500 2000 2500 0 100 200 300 400 500 600 700 800 B. Wohlfahrt and R. Beck,
time /ns time /ns CALOR 2014

An external filter can also be used with an appropriate solid state photosensor
However, an filter integrated with the silicon sensor can achieve greater efficiency
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Keysight Infiniium : Wednesday, November 20

137Cs line (662 keV) on BaF, (1cm?)
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Integrated approaches

The LAPPD, a channel plate PMT that works in a magnetic field, is very fast
and potentially very attractive, but a great deal of R&D remains before we
have practical device for use with BaF,

* Need either a photocathode with an extended UV response and a
quartz entrance window (i.e., no filter), or

» An efficient filter and/or wavelength-shifting coating on the window

* A size appropriate to the scintillating crystal Moliere radius

* An affordable price

 DH and RYZ had initiated an effort with ANL to develop an 8x8 cm
LAAPD with a Cs,Te UV-extended solar-blind photocathode
« After preliminary discussions, this effort has been suspended
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AlGaN photocathodes for an MCP
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AlGaN photocathodes have UV sensitivity and are solar-blind
Have been used in astrophysics for years, QE, e ~30% at 220 nm
Wide-band semiconductors such as AlGaN are radiation-hard
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An interference filter could be incorporated
O.Siegmund et al, Proc.SPIE 7021,70211B, 2008, doi:10.1117/12.790076
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Integrated approaches

 The LAPPD, a channel plate PMT that works in a magnetic field, is very fast
and potentially very attractive, but a great deal of R&D remains before we
have practical device for use with BaF,

* Need either a photocathode with an extended UV response and a
quartz entrance window (i.e., no filter), or

« An efficient filter and/or wavelength-shifting coating on the window

* A size appropriate to the scintillating crystal Moliere radius

» An affordable price

« Alarge area APD, with delta-doping for improved speed and QE, and an
integrated ALD-applied interference filter
« Devices have been produced, but noise is large at room temperature
« Alarge area SiPM, with delta-doping (a super-lattice) for improved speed and
QE, and an integrated ALD-applied interference filter
 Development is underway
 We made an abortive attempt with Hamamatsu
« We have an ongoing effort with JPL/FBK
* Note that delta-doping and ALD filter application are independent processes
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Superlattice structures

» JPL has developed superlattice structures e e e e ey
that provide greatly enhanced quantum ¥y Yy
efficiency and improved time response for LB b e l
photosensors =

= Delta-doping and superlattices have g 3
been successfully employed for many %
years to enhance the UV performance Sl
of CCDs and APDs used in UV 12
astronomy in satellites and balloons b A

» Monoatomic layers of boron are implanted 0 1 2Depth(nrn? 4 5
beneath the (thinned) photosensitive o ko
surface of the Si device using molecular |
beam epitaxy (MBE) (2D doping) A «—— Delta and superlattice doping

= The MBE layers allow the conduction i e e e
band to remain stable with varying surface ~ *— P““!EEZE‘;““’ T e s
charge [ e contact

o—
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Superlattice performance improvements
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¢ Absolute QE (Corrected for QY)

= Recombination of photoelectrons is o . Sicon Transmitiance (1)
. L ! A QE for unmodified, Front llluminated CCD
suppressed by quantum exclusion, |
resulting in close to 100% internal QE

= Quantum efficiency in the 200-300 nm
region approaches the silicon
transmittance (1-R) limit
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« The superlattice structure provides e —————— \
stability under intense UV illumination 3 \\ ———
= Relevant regime is ~ 1-10 J/cm?
U. Arp et al.,, J. Elect. Spect. and Related
e) Phenomena, 144, 1039 (2005) : gy M e
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ALD antireflection filters improve QE
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ALD-AR coatings provide up to 2X improvement over uncoated baseline and a
5x-50x improvement over incumbent UV detector technology

Nikzad, et al., Applied Optics, 51, (2012) 365.

@ 2015 California Institute of Technology. Government sponsorship acknowledged

G The ALD technique can also be used to make a bandpass filter
)



ALD bandpass interference filters

e Three and five layer filters have been investigated

The “wider” five layer filter encompasses more of the 195 nm peak
and provides improved slow component suppression

80
70 r
60" f 1
0ol \A m\yer wider filter— s e
< g ' H\1orma| incidence (0°)
c L
O ! !
AR \ o
0= [ . 2
'§§4E?ﬁ' \ ol
w06 W
|:-§_3m5 \\ |’='.
e W ——-60°
£ 04} : \','-.. |
520  TAR ——80% |
2703 | " \
) LY \ . N
o2t W\ 1 Filter characteristics
i \ > i
o1l /I AR )< \\ vary with angle
NS . .
/AR~ RN of incidence
150 200 250 300 350 400 450 500

Wavelength [nm]
q) J. Hennessey JPL

% 5 David Hitin ~ CPAD Madison WI

Dec. 8, 2019 13



ALD bandpass interference filters
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Three and five layer filters have been investigated
The “wider” five layer filter encompasses more of the 195 nm peak
and provides improved slow component suppression

80

(%)
8

o
-

Transmission
=
o

Intensity (arbitrary units)
o &
= o

=
[ ]
-

150 # - Zéh
J. Hennessey JPL

David Hitlin CPAD Madison WI

300 350 400

W=28@ngth [nm] 400
Wavelength (nm)

____________

oz

450

500
500

Dec. 8, 2019

14



BaF, fast/slow component comparison
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Fast/slow component comparison

Standard 5 layer filter
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ALD filter with Y-doped BaF, provides further suppression
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SiPMs with ALD filter and/or delta doping

« FBK SIPM

— Caltech and JPL are working with FBK to incorporate a 220nm filter on a
large area SiPM and to also incorporate a superlattice

— Many processed have been explored to remove or thin the usual SiN,

passivation from individual cells

— JPL has developed an
appropriate interference filter
that will be deposited
at wafer level

— FBK hasproduced 6x6mm chips
for testing at Caltech

e) G. Paternoster FBK ). Hennessey JPL

W David Hitin ~ CPAD Madison WI
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Filters built on measured passivation layer

Standard SiPM passivation is done with SiN,

— This limits filter design optimization due to strong UV absorption

design an
optimal filter

We have therefore also made wafers with alternative passivation using SiO,
— allows a better match to the BaF, fast component

Precise knowledge of the thickness of the passivation layer is required to

— Ellipsometry measurements at JPL confirm FBK thickness values
— Nomimal filter design parameters are tweaked to actual passivation layer

thickness

ptl
pt 2
pt3
pt4
pt5
pt6
pt7
pt8
pt9

std
avg
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W1 test structures
JPL meas.

29.25
29.26
29.36
29.45
28.58
28.93

29.3
28.98
29.48

0.3
29.2

FBK meas.

28.78

28.9
29.09
29.09
28.29
28.55
28.92
28.57
29.16

0.3
28.8
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Wafer level production and processing

* FBK has produced wafers with 6 mm x 6 mm SiPMs
(actually 4 internally interconnected 3 mm x 3mm structures
(35um pixels) with a several process variations

— lon implantation after SiN, passivation

— SiN, passivation as sacrificial layer before ion implantation, then
removed and replaced

— SiO, passivation
— Several SiN, and SiO, thicknesses
— Standard and with metal/poly guard ring structures
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« Six wafers have been processed at JPL
— SiN, passivation - apply filter
— SiO, passivation — apply filter e

@) — SiO, passivation, no filter — delta-doped to improve QE and rise time

% 5 David Hitlin  CPAD Madison WI Dec. 8, 2019 20




Wafer level production and processing
Wafer Layout

| 35um_std
e ' 35um_RqM 231
' Test Structure 22

Mask alignment

markers

(Filter etching as post-
processing step)

Test Structures

origin
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Filter options with updated optical models

« Three layer and five layer structures in which the first layer is either SiO, or SiN,

« All layers are thin enough that there is little advantage in moving to the higher
order filters

— The increased loss in the SiN, makes it difficult to have significant
throughput below 200 nm

5 layer oxide

3 layerion SiN,_| |
5 layer on SiN,|
3 layer on SiO,

W\ 5 layer on SiQ,
\'\.
20

5 layer oxide (2nd order)

First order on SiN, Second order on SiO,

{nem) Al,O, — 20 nm
AlL,O, — 12 nm
Al,O, — 30 nm
. Al,O, — 28 nm
Examples: [ == A, — 60 nm
SiN, 25 nm SiO, 37 nm
J. Hennessey JPL silicon silicon

W David Hitlin  CPAD Madison WI Dec. 8, 2019 22



Next steps

» After the ALD filters (and, eventually, superlattice structures) are created
at JPL, the wafers are returned to FBK for probing and dicing into chips

« Chips with differing filters and with and without superlattices are being
tested at Caltech for filter performance and QE and then spectra will be
taken with pure and Y-doped barium fluoride crystals

— OQOur existing spectrophotometer has been modified to extend

response to 200 nm J ‘i\
 Radiation hardness studies and MTF studie 4 j’ Mu2e SIPM. 5n:496:A2. a1 257V
will follow 65 by

e Additional wafers are available for further
rounds with modified parameters

* Measured QE of a five-layer filter on a :
device that was not brought to full bias, of
resulting in surface recombination and
incomplete charge collection

PDE (%)

N —

200 300 400 500 600
Wavelength (nm)
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Conclusions

= Avery fast barium fluoride crystal calorimeter that exploits the fast scintillation
component for its high rate capability and excellent time resolution is an
appropriate component of a Mu2e-Il upgrade or other high rate experiments
= Y-doped BaF, provides very significant suppression of the 320 nm slow
component with little effect on the 220 nm fast component
= |n order to fully exploit the < 1ns decay time of the fast component for improved
rate capability and time resolution, better photosensors are required and several
are under development
Desired device characteristics
= High gain
= High QE for the 220nm BaF, fast component
" [|nsensitive to the 320nm BaF, slow component
= Excellent rate performance
= UV stable
* Radiation hard to ys and neutrons
= A SiPM with these performance characteristics is in development
= Other promising technologies may yet emerge
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