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The High Luminosity LHC

LHC / HL-LHC Plan
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Radiation Challenge

= After the HL-LHC upgrade, the CMS end-cap will operate in an unprecedented
radiation environment

Fluences of up to 10® neg/cm? and doses of up to 1.5 MGy

= Will need very radiation hard detector material and readout
Strong dependency on |n| and |Z| suggest that design can vary with exact location
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Technology Choices

Both endcaps Silicon Scintillators

Area ~620 m? 370 m?

Channel size 0.5-1cm? 4 - 30 cm?

#Modules ~31000 4000

#Channels 6.1 M 240 k

Op. temp. -30 °C -30 °C

Per endcap CE-H (Si) CE-H

(Si+Scint)

Absorber Pb, CuW, Cu

Depth size 25.5 X, 1.7 A

Layers 28

Weight 23 t

*Dissipated power ~250kW
Removed with two-phase CO2 cooling operated at -35C
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Silicon Sensor Layout

e Hexagonal sensor geometry as largest tile-able polygon
o Maximize use of circular wafer
o Minimize ratio of periphery to surface area
o Truncated tips (“mouse-bites”) used for module
mounting to further increase use of wafer surface
e Calibration cells (small area) to guarantee the ability to
achieve MIP calibration

a|dwexa Josuas 9

e 8” vs 6” silicon wafer
o 8" advantages:
m Reducing the number of modules
m Simplifies module mechanics
m Lower cost
o 8" disadvantages:
m Standard deep-diffused Float zone (dd-FZ) wafer
material is not available on 8"
m Production process is new

a|dwexa Josuas g
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Hexaboards and Module Assembly

Hexaboard houses up to 6 HGCROCs
bonding to sensors through holes in PCB

Status: 8” board with HGCROC-V2 in
production

Lead Module Assembly Centre (MAC) Cu Base plate
automated gantry at UCSB set up

Hexaboard

Sensor

Kapton sheet

6 MACs world-wide in preparation

‘:z;zx::zxz:.°. 8
13333332838, 1)
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Scintillator Tiles and SIPMs

Darkbox

Extensive studies to establish radiation

(un)wrapped-tiles
hardness of scintillator materials and SiPMs | | |

Trigger
4 Counter

Sources, reactors and in-situ
Scintillator signal loss < 50%
use cast PVT material in inner region

moulded PS based tiles outside
Tile geometry and wrapping optimisation
using test beam and simulations

(RN
S

SiPM custom design developed with producers

(RN
N

"
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thermally conductive package, rad-hard window f 10
prototypes under way - equivalent devices g 8 abassestennrnnesenene feeretennenn...
characterised and in use for electronics tests ‘g’ ° « MPPC-HDR2-3015
GHz noise levels at end of life % ;1 om0
stay clear of PDE degradation by occupancy _tsum 0
‘_-—'\ 0 1 2V-VB [V]B 4 5
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Scintillator Module Assembly

First Tileboard prototype TB-1 produced
holds SiPMs, HGCROC2-SiPM, GBT-SCA (control), FEAST (DCDC), LEDs
complex layout due to fine-pitch (0.6mm) HGCROC BGA

alive and sending data

Assembly procedures for 4000 boards
building on CALICE experience

new techniques for foil cutting and tile glueing

---------

- A
"""""""

s
_-—- . am e S -

HGCROC-SiPM
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Lateral Structure, Cassettes

-Silicon and X\&&@,}Ww&
scintillator Sl
modules
assembled into
cassettes

Supported and
cooled by copper  mn.
cooling plate

*Data from |
mOdUIeS COIIGCted screws/spacers
by motherboards

-Cassettes house
all services and aII-siIitcfcon
cassette
DC2DC converters

.ooling plate

cooling plate

300 um
sensors

200 um
sensors

120 um
sensors

scintillator
tilemodules
silicon
modules

mixed silicon-
scintillator cassette

Zoltan Gecse CPAD 2019




Cooling Performance

- A mockup cassette has been fabricated to verify cooling
performance

*With CO2 temperature at -35C and expected heatload of
270W, silicon sensors were maintained at -30C

8

“Measured
- Silicon
. temperature

—CuW
—PCB
—CF

&

Number of RTDs

8-

lllllllll A Al AAAAl AAAAAAAA
-34 -33 -32 -31 -30 -29 -28 -27 -26 -25
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Front-End Electronics

Overall chip divided in two symmetrical parts
e 1 halfis made of:
— 39 channels: 18 ch, CMO, Calib, CM1, 18 ch (78 channels in total)
—  Bandgap, voltage reference close to the edge
—  Bias, ADC reference, Master TDC in the middle
—  Main digital block and 3 differential outputs (2x Trigger, 1x Data)

Measurements
e Charge
—  ADC: peak measurement, 10 bits @ 40 MHz
—  TDC:TOT (Time over Threshold), 12 bits (LSB = 50ps) Phaso . = N Ck4oMy
° Time Shifter Sl Fast comma?tds PPR—
—  TDC: TOA (Time of Arrival), 10 bits (LSB = 25ps) Bt - T
Two data flows Clock and control path
e DAQpath ! Y L Readout path
— 512 depth DRAM, circular buffer 6{ de}o;ing LN Fadoupe
—  Store the ADC, TOT and TOA data ADC I :
—  2DAQ 1,28 GBPS links :
. Latency ' Data
e  Trigger path TOT |+ IOT et . 1= 78x > readout
—  Sum of 4 (9) channels, linearization, compression over 7 bits manager | | [2c0ding Ciroular ! manager
— 4 Trigger 1,28 GBPS links Buffer ! Ix
, ‘ x Data
Control \ B TOx ' P link
o Fast commands . DAQ path .
— 320 MHz clock and 320 MHz commands s
— A 40 MHz extracted, 5 implemented fast commands Charge e 7 bits Trigger
e ¥y Truncation readout
e  |2C protocol for slow control Jlupsieanon GRS Compression manager
Ancillary blocks
e  Bandgap 4x Trigger
e  10-bits DAC for reference setting L
e  11-bits Calibration DAC for characterization and calibration o W
. Bandgap Slow control | g—oo
o PLIT . . ngb;clrbhzn ToT/ToA Voltage comm. port  |g—p
e  Adjustable phase for mixed domain thresholds References J Slow control path
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Beam Test Setup

CE-E: Hanging file
structure

e Double sided cassettes
e Lead/Copper absorber e Steel absorber
o~ 26 X, 1.4 A, e 39 layers, 14k

- indeti channels
CE-E - CE-H Scint=tle mounted on

CALICE AHCAL.:
e Scintillator/SiPM

an HBU with SiPM o~4.4 A\,

St T
—— : 3
—

\‘:‘—--"";"/
\ o ‘:3 ¥ e M CE-H: Hanging
SR \\ V& W g - . file structure

=" . eSingle sided
ors cassettes
e Steel absorber

o ~3.4A,,

\ >

-

First large-scale test of more than 90 HGCAL modules in October 2018 data-taking at CERN.
The setup was exposed to et & 1T beam of energies ranging from 20 to 300 GeV and 200 GeV y beams.
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Example Event Display

Example event display
October 2018 TB run 646 - event 2
250 GeV e+
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Performance

(silicon only)

list closely models the longitudinal shower
shapes and energy resolution measured in
the data using e+and pion momenta raging o o
from 20-300GeV 100 200 300

Hadron momentum [GeV/c]
Zoltan Gecse CPAD 2019 14

Longitudinal shower profile: average < ey ¢y GEANTZ, Qelober 218
energy deposited by e+ showers in each W o.05f o £
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Silicon Sensor Characterization

Low-Density (LD) design
(192 full cells)

** ?x; . ‘.“‘. . B - / ‘::?:tg‘ 2
% o‘ ----- 20 2a 90 ) NS ¢ Pt e
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w‘c‘*‘ 2329 e Ba e z‘ " p l!.:: |
OaRaRAARAROY: S senad
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High-Density (HD) design
(432 full cells)
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Sensor Thickness and Radiation Hardness

¢+ dd-FZ p-on-n 600 V ®  dd-FZ p-on-n 800 V ¥ dd-FZ n-on-p 600 V
A dd-FZ n-on-p 800 V ¥ Epi 100 n-on-p 600 V + Epi 50 p-on-n 300 V
® Epi 50 n-on-p 300 V

Outer Radius

T T T 11T
"~ dd-FZ 320 (298-291um)
L -
0]
. e 1; dd-FZ 200 (228-209um)
2 150 . = =
® I a
- ¥ ? dd-FZ 120 (145-131um)
2 10 v ! AR .
[7p) - v §
. Epi 100 (9
B I g0 | RES
5* . pi 50 (49um)
= < > Inner Radiu
I~ i \ . A Limit between
r AT " 200 and 120u
0 e J IS I sensors
10'® 10'® NI A
Fluence, neJan =it g

6” 135-cells (LD) 6” 239-cells (HD) 8” 192-cells (LD)

standard-diffused FZ e deep-diffused FZ (+ jumper cells) e shallow-diffused FZ (300um & 200um)
e 300um active thickness e 120um active thickness e epitaxial (120um active thickness)
e n- and p-type (individual and common) e n- and p-type (individual and common) e p-type (individual and common)
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Versatyle Characterization Systems

The sensor is DC coupled and no bias circuitry is present in
the design

Versatile systems developed for characterization of full
wafer size silicon sensors

CVI/IV




CV/IV - ARRAY (switching mAtRix pRobe cArd sYstem))

*Dual card setup to automatically measure CV and IV of
individual cells
- Switch card: contains all the active components and electronics

- Probe card: routes the switchcard’'s channels to the sensors’ cells using
spring loaded pins

switch card

BNC connections multiplexer matrix

probe card

spring loaded guard ring
probe card PCB pins contact

F_Pitters NIMA 040 (2019) 168_173

CPAD 2019
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Capacitance Measurements

- Capacitance measurements are corrected with open
measurements
C =C__-C

corr meas open

- Sensitive to inter-pad capacitance:

Cinter = Ccorr B Cbulk where Cbulk N SOErA / d
*6” sensors with varying gap size between pads
46 E - 8 CIV'IS !-IG'Ca!I P'relimi'na:'y e
o 5 “+ ntype
45 ) p :. ..................... _ Y p_type common .:
< | -4 p-type atoll .
8B gEsmad T T e E—— R =
§ W 5 :
o 5 '-‘ ___________________ W % "‘,‘# .................................... -.
© b i e i sy, :
® 4 ..1* ........................ ¥ .................... =
g B | :
o _ [ ‘ ;
-.E 3 :. .................................................................................................................. =
2 : 1 1 | 1

0 20 40 60 80 100
gap distance [um]
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Leakage Current Measurements

-8” sensor types: epi 120um and shallow-diffused FZ
200/300um

-120um sensors have good quality: ~0.1uA at 1000V

- Backside fragility observed on 200/300um sensors
- Good agreement between HPK and probe card measurements

Per-cell IV curves for prototype 192-channel sensor (300 um, individual p-stop)

21 Fowshacuprminay T ] OF
§1 CF _10°
8104 ' Hamamatsu 7-needle <é104
3103 *q:';m3 :
107 =10? ".'?.'?"
10 O 10 | e
1 "‘I::':,, 1 S o
107 k[ 10 '
10-2..1...1...1..‘1...1., 10_2...1...1...1...1...1.,
0O 200 400 600 800 1000 0 200 400 600 800 1000
Voltage (V) Voltage (V)
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Hexaboard Probecard for Noise Measurements

*Module readout PCB (Hexaboard) so far used in HGCAL
beam test, adapted to a probe card
- Spring loaded pins used for contact instead of wire-bonds
- Additional mechanical infrastructure for integration into sensor probe station

- Allows noise testing of irradiated sensors
- without irradiating the readout board

Hexaboard Hexaboard Probe Card

3
Sy

Mo

—_—

{ am T
' . ‘- :
\1\‘/

Zoltan Gecse CPAD 2019 21



Noise of Unirradiated Sensors @ 400V

1 MIP in 300 um sensor corresponds to ~40 ADC

*So far no significant difference between p-type and n-type
was observed

- Studies done in CMS Tracker group showed that non-Gaussian noise caused
by micro-discharges due to high electric field is larger in n-type sensors

*Next: sensors irradiated to higher fluences

Unirradiated Irradiated to 1.5x10"* n qlcm2
(.1 ————T— 0.1 ' = ———
3 it . e sy o gl RO O e %ﬁ%ﬁwﬁ%ﬁm,
= Il .o o e = o~ = o 5 oy o I
S0.08 - —— PYpe,com. -sto, ignl - pedestl (M 520 - 5008 — P Com o S e S a
£ o) ; ] O ]
$0.06 - ) o1  Bo.osl g
T [ ’g g1 ® S
S0.04] [ | a1 Eoo4f =
Z '1 <1 Z X
0.02} ‘ S 0.02} s
0 L— ~ J AR ] ol = i
-100 -50 0 50 100 -100 -50 0 50 100

Signal (ADC) Signal (ADC)
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Transiant Current Technique, 7-pin board

*TCT: a signal is generated in the silicon sensor with a laser
and the induced current is recorded by an oscilloscope
- Can study charge collection efficiency

* Probe different sensor depth . -
with different wavelengths Setup lllustration

_‘
*7-pin TCT board
- Developed at Fermilab

- Adoptable to differentE
sensor layouts 5 2 =

—J
1Kohm to GND &  * ¢
Mohm to GND *

6 x (I

Ym Jaydwo 15)

painibajul 93] -spIq

<= Fermilab

CMS/HGC
Sensor Multi Probe
Sergey Los  Feb.20, 2019
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CCE Measurements on 8” Sensors

- Collected charge increases with depleted volume

*Voltage scan reveals depletion voltage
(saturation of collected charge)

- Collected charge calculated from full waveform integral
(normalized to value at highest HV)

o
@
llll

: Work in progress

o
~
T

o
(=2
AL

o
(9}
1 l L

Collected charge

8-inch LD sensor thickness [um]
w—@== 300
—=— 120
—=— 200

Pulse amplitude [V]

o
H
llllll

o
w
lll]ll

o
()

o | ! VDep(ZOOpm):

|

i VDep(120pm) | VDep(300um)
WANE JEN RS x10-° 0.2 _1 1 1 I i: I I I I i 1 12 I i I 1 1 L i L 1 1 1 i 1 1
0 100 200 300 400 500

Time [s] HV bias [V]
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*The HL-LHC poses high pile-up and high radiation level
challenges

The HGCal design is well prepared to cope with the
challenges using high granularity, precision timing and
silicon sensors

*Versatile systems developed for characterization of large
area silicon sensors

*Fast turnaround for CMS HGCAL sensor production phases
*Next steps: further characterization of irradiated sensors

Prototypes Pre-series Pre-production 2 Full production

Production Production Testing

'Nov 2019 Mar 2020 Jun 2020 Nov 2020 Mar 2021 Oct 2021
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